
SpharaPy Documentation
Release 1.1.1

Uwe Graichen

Jan 31, 2022

CONTENTS

1 Quick start with SpharaPy 1
1.1 SPHARA – The problem setting . 1
1.2 The SpharaPy package . 2
1.3 Specification of the spatial configuration of the sample points 2
1.4 Determining the Laplace-Beltrami Operator . 4

2 SPHARA – The theoretical background in a nutshell 7
2.1 Motivation . 7
2.2 Discrete representation of surfaces . 7
2.3 Discrete Laplace-Beltrami Operators . 8
2.4 Eigensystems of Discrete Laplace-Beltrami Operators 10
2.5 SPHARA as signal processing framework . 11
2.6 Spatial filtering using SPHARA . 12

3 API Reference 15
3.1 spharapy.trimesh: Triangular Mesh Data . 15
3.2 spharapy.spharabasis: SPHARA Basis . 20
3.3 spharapy.spharatransform: SPHARA Transform 22
3.4 spharapy.spharafilter: SPHARA Filter . 24
3.5 spharapy.datasets: Sample data sets . 26

4 Tutorials and introductory examples 29
4.1 Determination of the SPHARA basis functions for an EEG sensor setup 29
4.2 Spatial SPHARA analysis of EEG data . 39
4.3 Spatial SPHARA filtering of EEG data . 46

5 Glossary of Common Terms 59

Bibliography 61

Python Module Index 63

Index 65

i

ii

CHAPTER

ONE

QUICK START WITH SPHARAPY

Section contents

In this tutorial, we briefly introduce the vocabulary used in spatial harmonic analysis (SPHARA) and
we give a simple learning example to SpharaPy.

1.1 SPHARA – The problem setting

Fourier analysis is one of the standard tools in digital signal and image processing. In ordinary digital
image data, the pixels are arranged in a Cartesian or rectangular grid. Performing the Fourier trans-
form, the image data 𝑥[𝑚,𝑛] is compared (using a scalar product) with a two-dimensional Fourier basis
𝑓 [𝑘, 𝑙] = e−2𝜋i·(𝑚𝑘

𝑀
+𝑛𝑙

𝑁). In Fourier transform on a Cartesian grid, the Fourier basis used is usually
inherently given in the transformation rule

𝑋[𝑘, 𝑙] =

𝑀−1∑︁
𝑚=0

𝑁−1∑︁
𝑛=0

𝑥[𝑚,𝑛] · e−2𝜋i·(𝑚𝑘
𝑀

+𝑛𝑙
𝑁) .

A Fourier basis is a solution to Laplace’s eigenvalue problem (related to the Helmholtz equation)

𝐿𝑥⃗ = 𝜆𝑥⃗ , (1)

with the discrete Laplace-Beltrami operator in matrix notation 𝐿 ∈ R𝑀×𝑁 , the eigenvectors 𝑥⃗ contain-
ing the harmonic functions and the eigenvalues 𝜆 the natural frequencies.

An arbitrary arrangement of sample points on a surface in three-dimensional space can be described by
means of a triangular mesh. A spatial harmonic basis (SPHARA basis) is a solution of a Laplace eigen-
value problem for the given triangle mesh can be obtained by discretizing a Laplace-Beltrami operator
for the mesh and solving the Laplace eigenvalue problem in equation (1). SpharaPy provides classes and
functions to support these tasks:

• managing triangular meshes describing the spatial arrangement of the sample points,

• determining the Laplace-Beltrami operator of these meshes,

• computing a basis for spatial Fourier analysis of data defined on the triangular mesh, and

• performing the SPHARA transform and filtering.

1

SpharaPy Documentation, Release 1.1.1

1.2 The SpharaPy package

The SpharaPy package consists of five modules spharapy.trimesh , spharapy.spharabasis,
spharapy.spharatransform , spharapy.spharafilter and spharapy.datasets. In the follow-
ing we use three of the five SpharaPy modules to briefly show how a SPHARA basis can be calculated
for given spatial sample points. The spharapy.trimesh module contains the TriMesh class, which
can be used to specify the configuration of the spatial sample points. The SPHARA basis functions can
be determined using the spharapy.spharabasis module, employing different discretizations. The
spharapy.datasets module is an interface to the example data sets provided with the SpharaPy pack-
age.

Code source: Uwe Graichen
License: BSD 3 clause

import modules from spharapy package
import spharapy.trimesh as tm
import spharapy.spharabasis as sb
import spharapy.datasets as sd

import additional modules used in this tutorial
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np

1.3 Specification of the spatial configuration of the sample points

To illustrate some basic functionality of the SpharaPy package, we load a simple triangle mesh from the
example data sets.

loading the simple mesh from spharapy sample datasets
mesh_in = sd.load_simple_triangular_mesh()

The imported mesh is defined by a list of triangles and a list of vertices. The data are stored in a
dictionary with the two keys ‘vertlist’ and ‘trilist’

print(mesh_in.keys())

Out:

dict_keys(['vertlist', 'trilist'])

The simple, triangulated surface consists of 131 vertices and 232 triangles and is the triangulation of a
hemisphere of an unit ball.

vertlist = np.array(mesh_in['vertlist'])
trilist = np.array(mesh_in['trilist'])
print('vertices = ', vertlist.shape)
print('triangles = ', trilist.shape)

Out:

2 Chapter 1. Quick start with SpharaPy

SpharaPy Documentation, Release 1.1.1

vertices = (131, 3)
triangles = (232, 3)

fig = plt.figure()
fig.subplots_adjust(left=0.02, right=0.98, top=0.98, bottom=0.02)
ax = fig.gca(projection='3d')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
ax.view_init(elev=60., azim=45.)
ax.set_aspect('auto')
ax.plot_trisurf(vertlist[:, 0], vertlist[:, 1], vertlist[:, 2],

triangles=trilist, color='lightblue', edgecolor='black',
linewidth=1)

Out:

/home/docs/checkouts/readthedocs.org/user_builds/spharapy/checkouts/latest/
→˓examples/plot_01_quick_start.py:123: MatplotlibDeprecationWarning: Calling␣
→˓gca() with keyword arguments was deprecated in Matplotlib 3.4. Starting two␣
→˓minor releases later, gca() will take no keyword arguments. The gca()␣
→˓function should only be used to get the current axes, or if no axes exist,␣
→˓create new axes with default keyword arguments. To create a new axes with␣
→˓non-default arguments, use plt.axes() or plt.subplot().

(continues on next page)

1.3. Specification of the spatial configuration of the sample points 3

SpharaPy Documentation, Release 1.1.1

(continued from previous page)

ax = fig.gca(projection='3d')

<mpl_toolkits.mplot3d.art3d.Poly3DCollection object at 0x7f677070f950>

1.4 Determining the Laplace-Beltrami Operator

In a further step, an instance of the class spharapy.trimesh.TriMesh is created from the lists of ver-
tices and triangles. The class spharapy.trimesh.TriMesh provides a number of methods to determine
certain properties of the triangle mesh required to generate the SPHARA basis.

print all implemented methods of the TriMesh class
print([func for func in dir(tm.TriMesh) if not func.startswith('__')])

Out:

['adjacent_tri', 'is_edge', 'laplacianmatrix', 'massmatrix', 'one_ring_
→˓neighborhood', 'remove_vertices', 'stiffnessmatrix', 'trilist', 'vertlist',
→˓'weightmatrix']

create an instance of the TriMesh class
simple_mesh = tm.TriMesh(trilist, vertlist)

For the simple triangle mesh an instance of the class SpharaBasis is created and the finite element dis-
cretization (‘fem’) is used. The complete set of SPHARA basis functions and the natural frequencies
associated with the basis functions are determined.

sphara_basis = sb.SpharaBasis(simple_mesh, 'fem')
basis_functions, natural_frequencies = sphara_basis.basis()

The set of SPHARA basis functions can be used for spatial Fourier analysis of the spatially irregularly
sampled data.

The first 15 spatially low-frequency SPHARA basis functions are shown below, starting with DC at the
top left.

sphinx_gallery_thumbnail_number = 2
figsb1, axes1 = plt.subplots(nrows=5, ncols=3, figsize=(8, 12),

subplot_kw={'projection': '3d'})
for i in range(np.size(axes1)):

colors = np.mean(basis_functions[trilist, i + 0], axis=1)
ax = axes1.flat[i]
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
ax.view_init(elev=70., azim=15.)
ax.set_aspect('auto')
trisurfplot = ax.plot_trisurf(vertlist[:, 0], vertlist[:, 1],

vertlist[:, 2], triangles=trilist,
cmap=plt.cm.bwr,

(continues on next page)

4 Chapter 1. Quick start with SpharaPy

SpharaPy Documentation, Release 1.1.1

(continued from previous page)

edgecolor='white', linewidth=0.)
trisurfplot.set_array(colors)
trisurfplot.set_clim(-1, 1)

cbar = figsb1.colorbar(trisurfplot, ax=axes1.ravel().tolist(), shrink=0.75,
orientation='horizontal', fraction=0.05, pad=0.05,
anchor=(0.5, -4.0))

plt.subplots_adjust(left=0.0, right=1.0, bottom=0.08, top=1.0)
plt.show()

1.4. Determining the Laplace-Beltrami Operator 5

SpharaPy Documentation, Release 1.1.1

Total running time of the script: (0 minutes 1.467 seconds)

6 Chapter 1. Quick start with SpharaPy

CHAPTER

TWO

SPHARA – THE THEORETICAL BACKGROUND IN A NUTSHELL

2.1 Motivation

The discrete Fourier analysis of 2D data defined on a flat surface and represented by a Cartesian or a
regular grid is very common in digital image processing and a fundamental tool in many applications.
For such data, the basis functions (BF) for the Fourier transformation are usually implicitly specified in
the transformation rule, compare [RKH10].

However, in many applications the sensors for data acquisition are not located on a flat surface and can
not be represented by Cartesian or regular grids. An example from the field of biomedical engineering
for non-regular sensor positions is the electroencephalography (EEG). In EEG, the sensors are placed at
predetermined positions at the head surface, a surface in space R3. The positions of the sensors of these
systems can be described by means of triangular meshes. Because of the particular sensor arrangement,
the spatial analysis of multi-sensor data can not be performed using the standard 2D Fourier analysis.
However, a spatial Fourier analysis can be also very useful for spatially irregularly sampled data.

In this Python package we implement a new method for SPatial HARmonic Analysis (SPHARA) of
multisensor data using the eigenbasis of the Laplace-Beltrami operator of the meshed surface of sensor
positions. Using this approach, basis functions of spatial harmonics for arbitrary arrangements of sensors
can be generated. The recorded multisensor data are decomposed by projection into the space of the
basis functions. For a much more detailed introduction of the theoretical principles of SPHARA see also
[GEF+15].

2.2 Discrete representation of surfaces

For the discrete case we assume that the sensors are located on an arbitrary surface, which is represented
by a triangular mesh in R3. The mesh 𝑀 = {𝑉,𝐸, 𝑇} consists of vertices 𝑣 ∈ 𝑉 , edges 𝑒 ∈ 𝐸 and
triangles 𝑡 ∈ 𝑇 . Each vertex 𝑣𝑖 ∈ R3 represents a sensor position. The number of vertices, edges and
triangles of 𝑀 are defined by |𝑉 |, |𝐸| and |𝑇 |, respectively. The neighborhood 𝑖⋆ for a vertex 𝑣𝑖 ∈ 𝑉 is
defined by 𝑖⋆ = {𝑣𝑥 ∈ 𝑉 : 𝑒𝑖𝑥 ∈ 𝐸}, see Fig. 2.1 (b). The number of neighbors of 𝑣𝑖 is 𝑛𝑖 = |𝑖⋆|. The
angles 𝛼𝑖𝑗 and 𝛽𝑖𝑗 are located opposed to the edge 𝑒𝑖𝑗 . The triangles 𝑡𝑎 and 𝑡𝑏, defined by the vertices
(𝑣𝑖, 𝑣𝑗 , 𝑣𝑜) and (𝑣𝑖, 𝑣𝑘, 𝑣𝑗), share the edge 𝑒𝑖𝑗 . The set of triangles sharing the vertex 𝑣𝑖 is given by
𝑖O = {𝑡𝑥 ∈ 𝑇 : 𝑣𝑖 ∈ 𝑡𝑥}. The area of a triangle 𝑡 is given by |𝑡|. An example for these mesh components
is illustrated in Fig. 2.1 (b).

7

SpharaPy Documentation, Release 1.1.1

tb

ta

iv

v

vi

j

pi
Γ

α
ij

eij

vl

vm

vn vo

Ai
Bβ

ij

vk

(a) (b) (c)

Fig. 2.1: The approximation of the Laplace-Beltrami operator. (a) continuous representation; (b)
discrete representation. The neighborhood 𝑖⋆ of vertex 𝑣𝑖 consists of the vertices {𝑣𝑥 ∈ 𝑉 : 𝑒𝑖𝑥 ∈ 𝐸}.
Either the length of 𝑒𝑖𝑗 or the size of the two angles 𝛼𝑖𝑗 and 𝛽𝑖𝑗 opposed to the edge 𝑒𝑖𝑗 are used to
estimate the weight 𝑤(𝑖, 𝑗) for 𝑒𝑖𝑗 . The two triangles 𝑡𝑎 and 𝑡𝑏 both share the edge 𝑒𝑖𝑗 ; (c) the area of the
barycell 𝐴B

𝑖 for the vertex 𝑣𝑖.

2.3 Discrete Laplace-Beltrami Operators

A function 𝑓 is defined for all vertices 𝑣𝑖 ∈ 𝑉 , it applies 𝑓 : 𝑣𝑖 → Rwith 𝑖 = 1, . . . , |𝑉 |. A discretization
∆𝐷 of the Laplace-Beltrami operator for 𝑓 is given by

∆𝐷𝑓𝑖 = 𝑏−1
𝑖

∑︁
𝑥∈𝑖⋆

𝑤(𝑖, 𝑥)
(︁
𝑓𝑖 − 𝑓𝑥

)︁
, (2.1)

with the weighting function 𝑤(𝑖, 𝑥) for edges 𝑒𝑖𝑥 ∈ 𝐸 and the normalization coefficient 𝑏𝑖 for the vertex
𝑣𝑖. For practical applications it is convenient to transform equation (2.1) into matrix notation. The
elements of the matrices 𝐵−1 and 𝑆 are determined using the coefficients 𝑏𝑖 and 𝑤(𝑖, 𝑥) of equation
(2.1). 𝐵−1 is a diagonal matrix, the elements are

𝐵−1
𝑖𝑗 =

{︃
𝑏−1
𝑖 if 𝑖 = 𝑗

0 otherwise ,
(2.2)

and the entries of 𝑆 are

𝑆𝑖𝑗 =

⎧⎪⎨⎪⎩
∑︀

𝑥∈𝑖⋆ 𝑤(𝑖, 𝑥) if 𝑖 = 𝑗

−𝑤(𝑖, 𝑥) if 𝑒𝑖𝑥 ∈ 𝐸

0 otherwise .
(2.3)

A Laplacian matrix 𝐿 can be expressed as product of a diagonal matrix 𝐵−1 and a matrix 𝑆

𝐿 = 𝐵−1 𝑆 , (2.4)

compare also [ZvKD10]. The size of the Laplacian matrix 𝐿 for a mesh 𝑀 is 𝑛 × 𝑛, with 𝑛 = |𝑉 |.
Using the Laplacian matrix L, ∆𝐷 applied to 𝑓 can be written as

∆𝐷𝑓 = −𝐿𝑓 . (2.5)

In the following we present four different approaches to discretize the Laplace-Beltrami operator, a
graph-theoretical approach and three geometric approaches.

First, we look at the graph-theoretical approach, where the coordinates of the positions of the vertices
are not considered. The topological Laplacian results from equation (2.1) by using 𝑤(𝑖, 𝑥) = 𝑏−1

𝑖 = 1,
see also [Tau95][Chu97][ZvKD07]. The graph-theoretical approach will be referred to as TL later in the
text.

8 Chapter 2. SPHARA – The theoretical background in a nutshell

SpharaPy Documentation, Release 1.1.1

Second, for inhomogeneous triangular meshes, where the distances between vertices and the sizes of
angles and triangles are different, the weighting function 𝑤 has to be adapted according to the mesh
geometry. In these approaches, the positions of the vertices are also considered. They are referred to as
geometric approaches. There are different approaches to treat inhomogeneous meshes.

The first possibility is to use the Euclidean distance of adjacent vertices raised to the power of a value 𝛼.
For equation (2.1) the coefficients 𝑏−1

𝑖 = 1 and 𝑤(𝑖, 𝑥) = ||𝑒𝑖𝑥||𝛼 are chosen. A common choice is to
use the inverse of the Euclidean distance with 𝛼 = −1 [Tau95][Fuj95]. This approach will be referred
to later as IE.

The second approach for a geometric discretization of the Laplace-Beltrami operator is derived by min-
imizing the Dirichlet energy for a triangulated mesh [PP93][Pol02]. It uses cotangent weights with

𝑤(𝑖, 𝑥) =
1

2
(cot(𝛼𝑖𝑥) + cot(𝛽𝑖𝑥)) , (2.6)

with the two angles 𝛼𝑖𝑥 and 𝛽𝑖𝑥 opposed to the edge 𝑒𝑖𝑥, see Fig. 2.1 (b). For edges on the boundary of
the mesh, the term cot(𝛽𝑖𝑥) is omitted, which leads to Neumann Boundary condition (BC). A drawback
of using the cotangent weights is that the value representing the integral of the Laplacian over a 1-ring
neighborhood (area of the 𝑖⋆-neighborhood) is assigned to a point sample [ZvKD07]. To resolve this issue
and to guarantee the correspondence between the continuous and the discrete approaches, the weights in
equation (2.6) are divided by the area 𝐴B

𝑖 of the barycell for the vertex 𝑣𝑖 [MDSB03], resulting in

𝑤(𝑖, 𝑥) =
1

2𝐴B
𝑖

(cot(𝛼𝑖𝑥) + cot(𝛽𝑖𝑥)) . (2.7)

The barycell for a vertex 𝑣𝑖 is framed by a polygonal line that connects the geometric centroids of triangles
in 𝑖O and the midpoints of the adjoined edges 𝑒𝑖𝑥, see Fig. 2.1 (c). The area of the 𝑖⋆-neighborhood for
a vertex 𝑣𝑖, which is the area of the triangles that are enclosed by the vertices 𝑣𝑥 ∈ 𝑖⋆, is referred to as
𝐴1

𝑖 . Then 𝐴B
𝑖 can be determined by 𝐴B

𝑖 = 1
3𝐴

1
𝑖 . For the discretizations using the cotangent weighted

formulation, the parameter 𝑏−1
𝑖 in equation (2.1) is set to 𝑏−1

𝑖 = 1. This approach, using cotangent
weights will be referred to as COT later in the manuscript.

The third geometric approach to discretize the Laplace-Beltrami operator is the Finite Element Method
(FEM), which is related to the approach using cotangent weights. Assuming that the function 𝑓 is piece-
wise linear and defined by its values 𝑓𝑖 on the vertices 𝑣𝑖 of a triangular mesh, 𝑓 can be interpolated using
nodal basis functions 𝜓𝑖

𝑓 =

|𝑉 |∑︁
𝑖=1

𝑓𝑖 𝜓𝑖 . (2.8)

We use the hat function for 𝜓𝑖, with

𝜓𝑖(𝑗) =

{︃
1 if 𝑖 = 𝑗

0 otherwise .
(2.9)

For two functions 𝑓 and 𝑔 defined on 𝑀 , a scalar product is given by

∫︁
𝑀
𝑓𝑔 d𝑎 =

|𝑉 |∑︁
𝑖=0

|𝑉 |∑︁
𝑗=0

𝑓𝑖𝑔𝑖

∫︁
𝑀
𝜓𝑖𝜓𝑗 d𝑎 =

⟨
𝑓, 𝑔⃗

⟩
𝐵
, (2.10)

with the area element d𝑎 on 𝑀 and the mass matrix 𝐵. The sparse mass matrix 𝐵 is given by

𝐵𝑖𝑗 =

∫︁
𝑀
𝜓𝑖𝜓𝑗 d𝑎 . (2.11)

2.3. Discrete Laplace-Beltrami Operators 9

SpharaPy Documentation, Release 1.1.1

For the FEM approach using hat functions, the elements of 𝐵 can be calculated by

𝐵𝑖𝑗 =

⎧⎪⎨⎪⎩
(︀∑︀

𝑡∈𝑖O |𝑡|
)︀
/6 if 𝑖 = 𝑗

(|𝑡𝑎| + |𝑡𝑏|) /12 if 𝑒𝑖𝑗 ∈ 𝐸

0 otherwise ,
(2.12)

where 𝑡𝑎 and 𝑡𝑏 are the two triangles adjacent to the edge 𝑒𝑖𝑗 , see Fig. 2.1 (b). For the FEM discretization
of the Laplace-Beltrami operator also a stiffness matrix 𝑆 has to be calculated. The elements of 𝑆𝑖𝑗 can
be estimated using the equations (2.3) and (2.6), compare [DZMC07][ZvKD07][VL07].

2.4 Eigensystems of Discrete Laplace-Beltrami Operators

Desirable properties of the discrete Laplacian 𝐿 are symmetry, positive weights, positive semi-
definiteness, locality, linear precision and convergence [WMKG07]. The symmetry 𝐿𝑖𝑗 = 𝐿𝑗𝑖 leads
to real eigenvalues and orthogonal eigenvectors. Positive weights 𝑤(𝑖, 𝑗) ≥ 0 assure, together with the
symmetry, the positive semi-definiteness of 𝐿. The locality of the discrete Laplace-Beltrami operator
enables the determination of weights 𝑤(𝑖, 𝑗) using the 𝑖⋆-neighborhood of a vertex 𝑣𝑖, with 𝑤(𝑖, 𝑗) = 0,
if 𝑒𝑖𝑗 /∈ 𝐸. The linear precision implies for a linear function 𝑓 defined on vertices 𝑣𝑖 that ∆𝐷𝑓𝑖 = 0
applies, which ensures the exact recovery of 𝑓 from the samples. The convergence property provides the
convergence from the discrete to the continuous Laplace-Beltrami operator ∆𝐷 → ∆ for a sufficient
refinement of the mesh.

The Laplacian matrix 𝐿 for the TL and the IE approach are positive semi-definite, symmetric and use
positive weights. The COT and the FEM approach do not fulfill the positive weight property, if the mesh
contains triangles with interior angles in the interval (𝜋/2, 𝜋), for which the cotangent is negative. The
TL approach is no geometric discretization, because it violates the linear precision and the convergence
property. In contrast, the COT and the FEM approach are geometric discretizations as they fulfill the
linear precision and the convergence property, but they violate the symmetry property. None of the
presented discretization methods fulfill all desirable properties, see also [WMKG07].

The discrete Laplacian eigenvalue problem for a real and symmetric Laplacian matrix is given by

𝐿 𝑥⃗𝑖 = 𝜆𝑖 𝑥⃗𝑖 , (2.13)

with eigenvectors 𝑥⃗𝑖 and eigenvalues 𝜆𝑖 of 𝐿. The Laplacian matrix 𝐿 is real and symmetric for the TL,
the IE and the COT approach. Because 𝐿 is real and symmetric, eigenvalues 𝜆𝑖 ∈ R with 𝜆𝑖 ≥ 0 are ob-
tained. The eigenvectors 𝑥⃗𝑖 are real-valued and form a harmonic orthonormal basis. The corresponding
eigenvalues 𝜆𝑖 can be considered as spatial frequencies. The eigenvectors 𝑥⃗𝑖 can be used for a spectral
analysis of functions defined on the mesh 𝑀 . The projection of a discrete function 𝑓 defined on 𝑀 onto
the basis of spatial harmonic functions is performed by the inner product for Euclidean 𝑛-spaces ⟨𝑓, 𝑥⃗𝑖⟩.
For the matrix 𝑋 , where the eigenvectors 𝑥⃗𝑖 represent the columns,

𝑋 = [𝑥⃗1 𝑥⃗2 · · · 𝑥⃗𝑛] ,

it applies

𝑋⊤𝑋 = 𝐼 , (2.14)

with the identity matrix 𝐼 .

For the FEM formulation, the BF 𝑦⃗𝑖 are computed by solving the generalized symmetric definite eigen-
problem

𝑆𝑦⃗𝑖 = 𝜆𝑖𝐵𝑦⃗𝑖 . (2.15)

10 Chapter 2. SPHARA – The theoretical background in a nutshell

SpharaPy Documentation, Release 1.1.1

Thus, the inversion of the mass matrix 𝐵 is avoided. Because 𝐵−1𝑆 is not symmetric, the eigenvectors
𝑦⃗𝑖 are real-valued, but not orthonormal with respect to the inner product for Euclidean 𝑛-spaces ⟨.⟩. To
use these eigenvectors as BF, the inner product, defined in equation~(ref{eq:scalarproductfem}), has to
be used ⟨

𝑓, 𝑦⃗𝑖

⟩
𝐵

= 𝑓 ⊤𝐵 𝑦⃗𝑖 , (2.16)

which assures the𝐵-orthogonality, compare also cite{vallet07}. The eigenvectors computed by the FEM
approach can be normalized by using the 𝐵-relative norm

⃗̃𝑦𝑖 =
𝑦⃗𝑖

‖𝑦⃗𝑖‖𝐵
with ‖𝑦⃗𝑖‖𝐵 =

√︁
⟨𝑦⃗𝑖, 𝑦⃗𝑖⟩𝐵 . (2.17)

For a matrix 𝑌 , where the normalized eigenvectors ⃗̃𝑦𝑖 represent the columns

𝑌 = [⃗̃𝑦1 ⃗̃𝑦2 · · · ⃗̃𝑦𝑛] , (2.18)

it applies

𝑌 ⊤𝐵𝑌 = 𝐼 . (2.19)

2.5 SPHARA as signal processing framework

2.5.1 Requirements

To use the eigenvectors of the discrete Laplacian Beltrami operator in the context of a signal processing
framework, it is necessary that they exhibit certain properties. The eigenvectors have to form a set of BF.
An inner product for the decomposition and for the reconstruction of the data has to be defined, which is
used for the transformation into the domain of the spatial frequencies and for the back-transformation into
the spatial domain. To be utilized for practical applications, the transformation from the spatial domain
into the spatial frequency domain has to have linear properties and should fulfill Parseval’s theorem.

2.5.2 Basis functions

A complete set of linearly independent vectors can be used as basis. For real and symmetric Laplacian
matrices 𝐿 the orthonormality of the eigenvectors is given inherently, see equations (2.13) and (2.14).
For the FEM approach, the orthonormality of the eigenvectors is assured explicitly, see equations (2.15)
to (2.19). The property of orthogonality includes the linear independence. To use the eigenvectors as
BF, they must further fulfill the property of completeness. The completeness can be shown by the di-
mension theorem for vector spaces. The dimensionality is equal for both the spatial representation and
the representation in the spatial frequency domain. For a mesh with 𝑛 vertices, 𝑛 unit impulse functions
are used as BF for the spatial representation. For the same mesh, we obtain 𝑛 discrete spatial harmonic
functions (eigenvectors) for the representation using spatial frequencies. The calculated eigenvectors are
orthonormal and complete; therefore, they can be used as orthonormal BF.

2.5. SPHARA as signal processing framework 11

SpharaPy Documentation, Release 1.1.1

2.5.3 Analysis and synthesis

For the analysis of discrete data defined on the vertices of the triangular mesh, the inner product is used
(transformation from spatial domain to spatial frequency domain). For an analysis using the eigenvectors
of a symmetric Laplacian matrix 𝐿 (TL, IE and COT), the vector space inner product is applied. The
coefficient 𝑐𝑖 for a single spatial harmonic BF 𝑥⃗𝑖 can be determined by

𝑐𝑖 = ⟨𝑓, 𝑥⃗𝑖⟩ . (2.20)

The transformation from the spatial into the spatial frequency domain is computed by

𝑐⃗⊤ = 𝑓 ⊤𝑋 . (2.21)

For an analysis using eigenvectors computed by the FEM approach, the inner product that assures the
𝐵-orthogonality needs to be applied

𝑐𝑖 =
⟨
𝑓, ⃗̃𝑦𝑖

⟩
𝐵

= 𝑓 ⊤𝐵 ⃗̃𝑦𝑖 . (2.22)

The transformation from the spatial into the spatial frequency domain is then be computed by

𝑐⃗⊤ = 𝑓 ⊤𝐵 𝑌 . (2.23)

Discrete data are synthesized using the linear combination of the coefficients 𝑐𝑖 and the corresponding
BF 𝑥⃗𝑖 or ⃗̃𝑦𝑖

𝑓 =

𝑛∑︁
𝑖=1

𝑐𝑖 𝑥⃗𝑖 (2.24)

or

𝑓 ⊤ = 𝑐⃗⊤ 𝑌 ⊤ . (2.25)

2.6 Spatial filtering using SPHARA

At the end of this short introduction we show the design of a spatial filter as a practical application of
SPHARA. The prerequisite for the successful use of SPHARA-based filters is the separability of useful
signal and interference in the spatial SPHARA spectrum. This applies, for example, to EEG. In EEG,
the low-frequency SPHARA basis functions provide the main contribution to signal power. In contrast,
single channel dropouts and spatially uncorrelated sensor noise exhibit an almost equally distributed
spatial SPHARA spectrum, compare [GEF+15] and tutorial Spatial SPHARA analysis of EEG data.

A filter matrix 𝐹 can be determined by

𝐹 = 𝑋 ·𝑅 · (𝑋 ·𝑅)ᵀ .

The matrix𝑋 contains columnwise the SPHARA basis functions and the matrix𝑅 is a selection matrix,
that contains an 1 on the main diagonal if the corresponding SPHARA basis function from 𝑋 is chosen.
All other elements of this matrix are 0.

If the Laplace-Beltrami Operator with FEM discretization is used to calculate the SPHARA basis func-
tions, the mass matrix 𝐵 must be added to the equation to compute the filter matrix

𝐹FEM = 𝐵 ·𝑋 ·𝑅 · (𝑋 ·𝑅)ᵀ .

12 Chapter 2. SPHARA – The theoretical background in a nutshell

SpharaPy Documentation, Release 1.1.1

The spatial SPHARA filter is applied to the data by multiplying the matrix containing the data 𝐷 by the
filter matrix 𝐹

𝐷̃ = 𝐷 · 𝐹 .

The matrix 𝐷 contains data, time samples in rows and spatial samples in columns and the matrix 𝐷̃ the
filtered data, see also tutorial Spatial SPHARA filtering of EEG data.

2.6. Spatial filtering using SPHARA 13

SpharaPy Documentation, Release 1.1.1

14 Chapter 2. SPHARA – The theoretical background in a nutshell

CHAPTER

THREE

API REFERENCE

The Python toolbox SpharaPy contains following modules:

3.1 spharapy.trimesh: Triangular Mesh Data

Triangular mesh data

This module provides a class for storing triangular meshes. Attributes of the triangular mesh can be
determined. In addition, methodes are available to derive further information from the triangular grid.

class spharapy.trimesh.TriMesh(trilist, vertlist)
Bases: object

Triangular mesh class

This class can be used to store data to define a triangular mesh and it provides atributes and meth-
odes to derive further information about the triangular mesh.

Parameters

trilist: array, shape (n_triangles, 3) List of triangles, each row of the array con-
tains the edges of a triangle. The edges of the triangles are defined by the
indices to the list of vertices. The index of the first vertex is 0. The number of
triangles is n_triangles.

vertlist: array, shape (n_points, 3) List of coordinates x, y, z which describes
the positions of the vertices.

Attributes

trilist: array, shape (n_triangles, 3) List of triangles of the mesh.

vertlist: array, shape (n_points, 3) List of coordinates of the vertices

adjacent_tri(vertex_index=0)
All triangles with the given vertex

The method determined all triangles of the triangular mesh that contain the given vertex.

Parameters

vertex_index [integer] Index of the vertex for which the adjacent vertices are
to be determined. The index must be in the range 0 to number of vertices -
1.

Returns

15

SpharaPy Documentation, Release 1.1.1

tri_with_vertex [array, shape (3, n)] List of triangles containing the given ver-
tex.

is_edge(vertex1_index, vertex2_index)
Are 2 vertices connected by an edge

The method determines whether two vertices are connected by an edge in the triangle mesh
and if so, whether it is an internal edge or a boundary edge.

Parameters

vertex1_index, vertex2_index [integer] Indeces of the two vertices. The in-
dex must be in the range 0 to number of vertices - 1.

Returns

is_edge [integer] 0 if vertex1 and vertex2 are not connected by a single edge,
1 if vertex1 and vertex2 are connected by a boundary edge, 2 if vertex1 and
vertex2 are connected by an internal edge.

laplacianmatrix(mode='inv_euclidean')
Compute a laplacian matrix for a triangular mesh

The method creates a laplacian matrix for a triangular mesh using different weighting func-
tion.

Parameters

mode [{‘unit’, ‘inv_euclidean’, ‘half_cotangent’}, optional] The methods for
determining the edge weights. Using the option ‘unit’ all edges of the mesh
are weighted by unit weighting function, the result is an adjacency matrix.
The option ‘inv_euclidean’ results in edge weights corresponding to the in-
verse Euclidean distance of the edge lengths. The option ‘half_cotangent’
uses the half of the cotangent of the two angles opposed to an edge as weight-
ing function. the default weighting function is ‘inv_euclidean’.

Returns

laplacianmatrix [array, shape (n_points, n_points)] Matrix, which contains
the discrete laplace operator for data defined at the vertices of a triangular
mesh. The number of vertices of the triangular mesh is n_points.

Examples

>>> from spharapy import trimesh as tm
>>> testtrimesh = tm.TriMesh([[0, 1, 2]], [[1., 0., 0.], [0., 2., 0.
→˓],
... [0., 0., 3.]])
>>> testtrimesh.laplacianmatrix(mode='inv_euclidean')
array([[0.76344136, -0.4472136 , -0.31622777],

[-0.4472136 , 0.72456369, -0.2773501],
[-0.31622777, -0.2773501 , 0.59357786]])

massmatrix(mode='normal')
Mass matrix of a triangular mesh

The method determines a mass matrix of a triangular mesh.

16 Chapter 3. API Reference

SpharaPy Documentation, Release 1.1.1

Parameters

mode [{‘normal’, ‘lumped’}, optional] The mode parameter can be used to
select whether a normal mass matrix or a lumped mass matrix is to be deter-
mined.

Returns

massmatrix [array, shape (n_points, n_points)] Symmetric matrix, which con-
tains the mass values for each edge and vertex for the FEM approch. The
number of vertices of the triangular mesh is n_points.

References

[VL07][DZMC07][ZvKD07]

Examples

>>> from spharapy import trimesh as tm
>>> testtrimesh = tm.TriMesh([[0, 1, 2]], [[1., 0., 0.], [0., 2., 0.
→˓],
... [0., 0., 3.]])
>>> testtrimesh.massmatrix()
array([[0.58333333, 0.29166667, 0.29166667],

[0.29166667, 0.58333333, 0.29166667],
[0.29166667, 0.29166667, 0.58333333]])

one_ring_neighborhood(vertex_index=0)
The 1 ring neighborhood of a vertex

The method determines all adjacent vertices of a vertex that is given by its index, the so called
1 ring neighborhood.

Parameters

vertex_index [integer] Index of the vertex for which the adjacent vertices are
to be determined. The index must be in the range 0 to number of vertices -
1.

Returns

one_ring_neighborhood [array, shape (1, n)] Array of indexes on vertices ad-
jacent to a given vertex.

remove_vertices(vertex_index_list)
Remove vertices from a triangular mesh

The method removes vertices from a triangle mesh. The Half-edge Collapse method is used.
The positions of the remaining vertices are not affected and they are retriangulated.

Parameters

vertex_index_list [vector of ints] Indices of the vertices to remove from the
mesh. The indices must be in the range 0 to number of vertices - 1.

Returns

3.1. spharapy.trimesh: Triangular Mesh Data 17

SpharaPy Documentation, Release 1.1.1

triangsamples [trimesh object] A trimesh object from the package spharapy,
where the given vertices are removed.

stiffnessmatrix()
Stiffness matrix of a triangular mesh

The method determines a stiffness matrix of a triangular mesh.

Returns

stiffmatrix [array, shape (n_points, n_points)] Symmetric matrix, which con-
tains the stiffness values for each edge and vertex for the FEM approch. The
number of vertices of the triangular mesh is n_points.

References

[VL07]

Examples

>>> from spharapy import trimesh as tm
>>> testtrimesh = tm.TriMesh([[0, 1, 2]], [[1., 0., 0.], [0., 2., 0.
→˓],
... [0., 0., 3.]])
>>> testtrimesh.stiffnessmatrix()
array([[-0.92857143, 0.64285714, 0.28571429],

[0.64285714, -0.71428571, 0.07142857],
[0.28571429, 0.07142857, -0.35714286]])

property trilist
Get or set the list of triangles.

Setting the list of triangles will simultaneously check if the triangle list is in the correct format.

property vertlist
Get or set the list of vertices.

Setting the list of triangles will simultaneously check if the vertice list is in the correct format.

weightmatrix(mode='inv_euclidean')
Compute a weight matrix for a triangular mesh

The method creates a weighting matrix for the edges of a triangular mesh using different
weighting function.

Parameters

mode [{‘unit’, ‘inv_euclidean’, ‘half_cotangent’}, optional] The parameter
mode specifies the method for determining the edge weights. Using the op-
tion ‘unit’ all edges of the mesh are weighted by unit weighting function,
the result is an adjacency matrix. The option ‘inv_euclidean’ results in edge
weights corresponding to the inverse Euclidean distance of the edge lengths.
The option ‘half_cotangent’ uses the half of the cotangent of the two angles
opposed to an edge as weighting function. the default weighting function is
‘inv_euclidean’.

18 Chapter 3. API Reference

SpharaPy Documentation, Release 1.1.1

Returns

weightmatrix [array, shape (n_points, n_points)] Symmetric matrix, which
contains the weight of the edges between adjacent vertices. The number of
vertices of the triangular mesh is n_points.

Examples

>>> from spharapy import trimesh as tm
>>> testtrimesh = tm.TriMesh([[0, 1, 2]], [[1., 0., 0.], [0., 2., 0.
→˓],
... [0., 0., 3.]])
>>> testtrimesh.weightmatrix(mode='inv_euclidean')
array([[0. , 0.4472136 , 0.31622777],

[0.4472136 , 0. , 0.2773501],
[0.31622777, 0.2773501 , 0.]])

spharapy.trimesh.angles_triangle(vertex1, vertex2, vertex3)
Estimate the three internal angles of a triangle given by three vertices

Parameters

vertex1 [array, shape (1, 3)]

vertex2 [array, shape (1, 3)]

vertex3 [array, shape (1, 3)]

Returns

angles [array, shape (1, 3)] Internal angles of the triangle given by the three ver-
tices.

Examples

>>> from spharapy import trimesh as tm
>>> tm.angles_triangle([1, 0, 0], [0, 1, 0], [0, 0, 1])
array([1.04719755, 1.04719755, 1.04719755])

spharapy.trimesh.area_triangle(vertex1, vertex2, vertex3)
Estimate the area of a triangle given by three vertices

The area of the triangle given by three vertices is calculated by the half cross product formula.

Parameters

vertex1 [array, shape (1, 3)]

vertex2 [array, shape (1, 3)]

vertex3 [array, shape (1, 3)]

Returns

trianglearea [float] Area of the triangle given by the three vertices.

3.1. spharapy.trimesh: Triangular Mesh Data 19

SpharaPy Documentation, Release 1.1.1

Examples

>>> from spharapy import trimesh as tm
>>> tm.area_triangle([1, 0, 0], [0, 1, 0], [0, 0, 1])
0.8660254037844386

spharapy.trimesh.side_lens_triangle(vertex1, vertex2, vertex3)
Estimate the three side length of a triangle given by three vertices

Parameters

vertex1 [array, shape (1, 3)]

vertex2 [array, shape (1, 3)]

vertex3 [array, shape (1, 3)]

Returns

side_lens [array, shape (1, 3)] Side lengths of the triangle given by the three ver-
tices.

Examples

>>> from spharapy import trimesh as tm
>>> tm.side_lens_triangle([1, 0, 0], [0, 1, 0], [0, 0, 1])
array([1.41421356, 1.41421356, 1.41421356])

3.2 spharapy.spharabasis: SPHARA Basis

SPHARA basis functions

This module provides a class for determining SPHARA basis functions. Methods are provided to deter-
mine basis functions using different discretization schemes of the Laplace-Beltrami operator, as FEM,
inverse euclidean and unit.

class spharapy.spharabasis.SpharaBasis(triangsamples=None, mode='fem')
Bases: object

SPHARA basis functions class

This class can be used to determine SPHARA basis functions for spatially irregularly sampled
functions whose topology is described by a triangular mesh.

Parameters

triangsamples [trimesh object] A trimesh object from the package spharapy in
which the triangulation of the spatial arrangement of the sampling points is
stored. The SPHARA basis functions are determined for this triangulation of
the sample points.

mode [{‘unit’, ‘inv_euclidean’, ‘fem’}, optional] The discretization method used
to estimate the Laplace-Beltrami operator. Using the option ‘unit’ all edges of
the mesh are weighted by unit weighting function. The option ‘inv_euclidean’
results in edge weights corresponding to the inverse Euclidean distance of the

20 Chapter 3. API Reference

SpharaPy Documentation, Release 1.1.1

edge lengths. The option ‘fem’ uses a FEM discretization. The default weight-
ing function is ‘fem’.

Attributes

triangsamples: trimesh object Triangulation of the spatial arrangement of the
sampling points

mode: {‘unit’, ‘inv_euclidean’, ‘fem’} Discretization used to estimate the
Laplace-Beltrami operator

basis()
Return the SPHARA basis for the triangulated sample points

This method determines a SPHARA basis for spatially distributed sampling points described
by a triangular mesh. A discrete Laplace-Beltrami operator in matrix form is determined for
the given triangular grid. The discretization methods for determining the Laplace-Beltrami
operator is specified in the attribute mode. The eigenvectors 𝑥⃗ and the eigenvalues 𝜆 of the
matrix 𝐿 containing the discrete Laplace-Beltrami operator are the SPHARA basis vectors
and the natural frequencies, respectively, 𝐿𝑥⃗ = 𝜆𝑥⃗.

Parameters

Returns

basis [array, shape (n_points, n_points)] Matrix, which contains the SPHARA
basis functions column by column. The number of vertices of the triangular
mesh is n_points.

frequencies [array, shape (n_points, 1)] The natural frequencies associated to
the SPHARA basis functions.

Examples

>>> from spharapy import trimesh as tm
>>> from spharapy import spharabasis as sb
>>> testtrimesh = tm.TriMesh([[0, 1, 2]], [[1., 0., 0.], [0., 2., 0.
→˓],
... [0., 0., 3.]])
>>> sb_fem = sb.SpharaBasis(testtrimesh, mode='fem')
>>> sb_fem.basis()
(array([[0.53452248, -0.49487166, 1.42857143],

[0.53452248, -0.98974332, -1.14285714],
[0.53452248, 1.48461498, -0.28571429]]),

array([2.33627569e-16, 1.71428571e+00, 5.14285714e+00]))

massmatrix()
Return the massmatrix

The method returns the mass matrix of the triangular mesh.

property mode
Get or set the discretization method.

3.2. spharapy.spharabasis: SPHARA Basis 21

SpharaPy Documentation, Release 1.1.1

The discretization method used to estimate the Laplace-Beltrami operator, choosen from
{‘unit’, ‘inv_euclidean’, ‘fem’}. Setting the triangsamples object will simultaneously check
the correct format.

property triangsamples
Get or set the triangsamples object.

The parameter triangsamples has to be an instance of the class spharapy.trimesh.TriMesh.
Setting the triangsamples object will simultaneously check the correct format.

3.3 spharapy.spharatransform: SPHARA Transform

SPHARA transform

This module provides a class to perform the SPHARA transform. The class is derived from spharapy.
spharabasis.SpharaBasis. It provides methodes the SPHARA anaylsis and synthesis of spatially
irregularly sampled data.

class spharapy.spharatransform.SpharaTransform(triangsamples=None, mode='fem')
Bases: spharapy.spharabasis.SpharaBasis

SPHARA transform class

This class is used to perform the SPHARA forward (analysis) and inverse (synthesis) transforma-
tion.

Parameters

triangsamples [trimesh object] A trimesh object from the package spharapy in
which the triangulation of the spatial arrangement of the sampling points is
stored. The SPHARA basic functions are determined for this triangulation of
the sample points.

mode [{‘unit’, ‘inv_euclidean’, ‘fem’}, optional] The discretisation method used
to estimate the Laplace-Beltrami operator. Using the option ‘unit’ all edges of
the mesh are weighted by unit weighting function. The option ‘inv_euclidean’
results in edge weights corresponding to the inverse Euclidean distance of the
edge lengths. The option ‘fem’ uses a FEM discretisation. The default weight-
ing function is ‘fem’.

analysis(data)
Perform the SPHARA transform (analysis)

This method performs the SPHARA transform (analysis) of data defined at spatially dis-
tributed sampling points described by a triangular mesh. The forward transformation is per-
formed by matrix multiplication of the data matrix and the matrix with SPHARA basis func-
tions 𝑋̃ = 𝑋 ·𝑆, with the SPHARA basis 𝑆, the data matrix𝑋 and the SPHARA coefficients
matix 𝑋̃ . In the forward transformation using SPHARA basic functions determined by dis-
cretization with FEM approach, the modified scalar product including the mass matrix is used
𝑋̃ = 𝑋 ·𝐵 · 𝑆, with the mass matrix 𝐵.

Parameters

data [array, shape(m, n_points)] A matrix with data to be transformed (an-
alyzed) by SPHARA. The number of vertices of the triangular mesh is

22 Chapter 3. API Reference

SpharaPy Documentation, Release 1.1.1

n_points. The order of the spatial sample points must correspond to that
in the vertex list used to determine the SPHARA basis functions.

Returns

coefficients [array, shape (m, n_points)] A matrix containing the SPHARA
coefficients. The coefficients are sorted column by column with increasing
spatial frequency, starting with DC in the first column.

Examples

Import the necessary packages

>>> import numpy as np
>>> from spharapy import trimesh as tm
>>> from spharapy import spharatransform as st
>>> testtrimesh = tm.TriMesh([[0, 1, 2]], [[1., 0., 0.], [0., 2., 0.
→˓],
... [0., 0., 3.]])
>>> st_fem_simple = st.SpharaTransform(testtrimesh, mode='fem')
>>> data = np.concatenate([[[0., 0., 0.], [1., 1., 1.]],
... np.transpose(st_fem_simple.basis()[0])])
>>> data
array([[0. , 0. , 0.],

[1. , 1. , 1.],
[0.53452248, 0.53452248, 0.53452248],
[-0.49487166, -0.98974332, 1.48461498],
[1.42857143, -1.14285714, -0.28571429]])

>>> coef_fem_simple = st_fem_simple.analysis(data)
>>> coef_fem_simple
array([[0.00000000e+00, 0.00000000e+00, 0.00000000e+00],

[1.87082869e+00, 1.09883582e-16, -4.18977022e-16],
[1.00000000e+00, -2.75573800e-16, -8.86630311e-18],
[-1.14766454e-16, 1.00000000e+00, 2.30648330e-16],
[6.52367763e-17, 1.68383874e-16, 1.00000000e+00]])

synthesis(coefficients)
Perform the inverse SPHARA transform (synthesis)

This method performs the inverse SPHARA transform (synthesis) for data defined at spatially
distributed sampling points described by a triangular mesh. The forward transformation is
performed by matrix multiplication of the data matrix and the matrix with SPHARA basis
functions 𝑋̃ = 𝑋 ·𝑆, with the SPHARA basis 𝑆, the data matrix 𝑋 and the SPHARA coef-
ficients matix 𝑋̃ . In the forward transformation using SPHARA basic functions determined
by discretization with FEM approach, the modified scalar product including the mass matrix
is used 𝑋̃ = 𝑋 ·𝐵 · 𝑆, with the mass matrix 𝐵.

Parameters

coefficients [array, shape (m, n_points)] A matrix containing the SPHARA
coefficients. The coefficients are sorted column by column with increasing
spatial frequency, starting with DC in the first column.

Returns

3.3. spharapy.spharatransform: SPHARA Transform 23

SpharaPy Documentation, Release 1.1.1

data [array, shape(m, n_points)] A matrix with data to be forward transformed
(analyzed) by SPHARA. The number of vertices of the triangular mesh is
n_points. The order of the spatial sample points must correspond to that in
the vertex list used to determine the SPHARA basis functions.

Examples

>>> import numpy as np
>>> from spharapy import trimesh as tm
>>> from spharapy import spharatransform as st
>>> testtrimesh = tm.TriMesh([[0, 1, 2]], [[1., 0., 0.], [0., 2., 0.
→˓],
... [0., 0., 3.]])
>>> st_fem_simple = st.SpharaTransform(testtrimesh, mode='fem')
>>> data = np.concatenate([[[0., 0., 0.], [1., 1., 1.]],
... np.transpose(st_fem_simple.basis()[0])])
>>> data
array([[0. , 0. , 0.],

[1. , 1. , 1.],
[0.53452248, 0.53452248, 0.53452248],
[-0.49487166, -0.98974332, 1.48461498],
[1.42857143, -1.14285714, -0.28571429]])

>>> coef_fem_simple = st_fem_simple.analysis(data)
>>> coef_fem_simple
array([[0.00000000e+00, 0.00000000e+00, 0.00000000e+00],

[1.87082869e+00, 1.09883582e-16, -4.18977022e-16],
[1.00000000e+00, -2.75573800e-16, -8.86630311e-18],
[-1.14766454e-16, 1.00000000e+00, 2.30648330e-16],
[6.52367763e-17, 1.68383874e-16, 1.00000000e+00]])

>>> recon_fem_simple = st_fem_simple.synthesis(coef_fem_simple)
>>> recon_fem_simple
array([[0. , 0. , 0.],

[1. , 1. , 1.],
[0.53452248, 0.53452248, 0.53452248],
[-0.49487166, -0.98974332, 1.48461498],
[1.42857143, -1.14285714, -0.28571429]])

3.4 spharapy.spharafilter: SPHARA Filter

SPHARA filter

This module provides a class to perform a spatial filtering using a SPHARA basis. The class is derived
from spharapy.spharabasis.SpharaBasis. It provides methodes to design different types of filters
and to apply this filters to spatially irregularly sampled data.

class spharapy.spharafilter.SpharaFilter(triangsamples=None, mode='fem',
specification=0)

Bases: spharapy.spharabasis.SpharaBasis

SPHARA filter class

24 Chapter 3. API Reference

SpharaPy Documentation, Release 1.1.1

This class is used to design different types of filters and to apply this filters to spatially irregularly
sampled data.

Parameters

triangsamples [trimesh object] A trimesh object from the package spharapy in
which the triangulation of the spatial arrangement of the sampling points is
stored. The SPHARA basic functions are determined for this triangulation of
the sample points.

mode [{‘unit’, ‘inv_euclidean’, ‘fem’}, optional] The discretisation method used
to estimate the Laplace-Beltrami operator. Using the option ‘unit’ all edges of
the mesh are weighted by unit weighting function. The option ‘inv_euclidean’
results in edge weights corresponding to the inverse Euclidean distance of the
edge lengths. The option ‘fem’ uses a FEM discretisation. The default weight-
ing function is ‘fem’.

specification [integer or array, shape (1, n_points)] If an integer value for speci-
fication is passed to the constructor, it must be within the interval (-n_points,
n_points), where n_points is the number of spatial sample points. If a positive
integer value is passed, a spatial low-pass filter with the corresponding number
of SPHARA basis functions is created, if a negative integer value is passed, a
spatial low-pass filter is created. If a vector is passed, then all SPHARA basis
functions corresponding to nonzero elements of the vector are used to create
the filter. The default value of specification is 0, it means a neutral all-pass
filter is designed and applied.

filter(data)
Perform the SPHARA filtering

This method performs the spatial SPHARA filtering for data defined at spatially distributed
sampling points described by a triangular mesh. The filtering is performed by matrix multi-
plication of the data matrix and a precalculated filter matrix.

Parameters

data [array, shape(m, n_points)] A matrix with data to be filtered by spatial
SPHARA filter. The number of vertices of the triangular mesh is n_points.
The order of the spatial sample points must correspond to that in the vertex
list used to determine the SPHARA basis functions.

Returns

data_filtered [array, shape (m, n_points)] A matrix containing the filtered
data.

Examples

>>> import numpy as np
>>> from spharapy import trimesh as tm
>>> from spharapy import spharafilter as sf
>>> # define the simple test mesh
>>> testtrimesh = tm.TriMesh([[0, 1, 2]], [[1., 0., 0.], [0., 2., 0.
→˓],
... [0., 0., 3.]])

(continues on next page)

3.4. spharapy.spharafilter: SPHARA Filter 25

SpharaPy Documentation, Release 1.1.1

(continued from previous page)

>>> # create a spatial lowpass filter, FEM discretisation
>>> sf_fem = sf.SpharaFilter(testtrimesh, mode='fem',
... specification=[1., 1., 0.])
>>> # create some test data
>>> data = np.concatenate([[[0., 0., 0.], [1., 1., 1.]],
... np.transpose(sf_fem.basis()[0])])
>>> data
array([[0. , 0. , 0.],

[1. , 1. , 1.],
[0.53452248, 0.53452248, 0.53452248],
[-0.49487166, -0.98974332, 1.48461498],
[1.42857143, -1.14285714, -0.28571429]])

>>> # filter the test data
>>> data_filtered = sf_fem.filter(data)
>>> data_filtered
array([[0.00000000e+00, 0.00000000e+00, 0.00000000e+00],

[1.00000000e+00, 1.00000000e+00, 1.00000000e+00],
[5.34522484e-01, 5.34522484e-01, 5.34522484e-01],
[-4.94871659e-01, -9.89743319e-01, 1.48461498e+00],
[-1.69271249e-16, -2.75762028e-16, 3.10220481e-16]])

property specification
Get or set the specification of the filter.

The parameter specification has to be an integer or a vector. Setting the specification will
simultaneously apply a plausibility check.

3.5 spharapy.datasets: Sample data sets

The spharapy.datasets: module includes utilities to provide sample datasets.

spharapy.datasets.load_eeg_256_channel_study()
Load sensor setup and measured EEG data

The data set consists of a triangulation of a 256 channel equidistant EEG cap and EEG data
from previously performed experiment addressing the cortical activation related to somatosensory-
evoked potentials (SEP). During the experiment the median nerve of the right forearm was stim-
ulated by bipolar electrodes (stimulation rate: 3.7 Hz, interstimulus interval: 270 ms, stimulation
strength: motor plus sensor threshold [MAB+99][CAC+08], constant current rectangular pulse
wave impulses with a length of 50 mu s, number of stimulations: 6000). Data were sampled at
2048 Hz and software high-pass (24 dB/oct, cutoff-frequency 2 Hz) and notch (50 Hz and two har-
monics) filtered. All trials were manually checked for artifacts, the remaining trials were averaged,
see also S1 data set in [GEF+15].

Number of vertices 256
Number of triangles 480
SEP Data (EEG) 256 channels, 369 time samples
Time range 50 ms before to 130 ms after stimulation
Sampling frequency 2048 Hz

26 Chapter 3. API Reference

SpharaPy Documentation, Release 1.1.1

Parameters

None

Returns

triangulation and EEG data: dictionary Dictionary-like object containing the
triangulation of a simple triangular mesh. The attributes are: ‘vertlist’, the list
of vertices, ‘trilist’, the list of triangles, ‘labellist’ the list of labels of the EEG
channels, ‘eegdata’, an array containing the EEG data.

spharapy.datasets.load_minimal_triangular_mesh()
Returns the triangulation of a single triangle

The data set consists of a list of three vertices at the unit vectors of vector space
:math:`mathbb{R}^3`and a list of a single triangle.

Number of vertices 3
Number of triangles 1

Parameters

None

Returns

triangulation [dictionary] Dictionary-like object containing the triangulation of
a single triangle. The attributes are: ‘vertlist’, the list of vertices, ‘trilist’, the
list of triangles.

spharapy.datasets.load_simple_triangular_mesh()
Returns the triangulation of a simple triangular mesh

The data set consists of a triangulation of an unit hemisphere.

Number of vertices 131
Number of triangles 232

Parameters

None

Returns

triangulation [dictionary] Dictionary-like object containing the triangulation of
a simple triangular mesh. The attributes are: ‘vertlist’, the list of vertices,
‘trilist’, the list of triangles.

3.5. spharapy.datasets: Sample data sets 27

SpharaPy Documentation, Release 1.1.1

28 Chapter 3. API Reference

CHAPTER

FOUR

TUTORIALS AND INTRODUCTORY EXAMPLES

4.1 Determination of the SPHARA basis functions for an EEG sen-
sor setup

Section contents

This tutorial introduces the steps necessary to determine a generalized spatial Fourier basis for an EEG
sensor setup using SpharaPy. The special properties of the different discretization approaches of the
Laplace-Beltrami operator will be discussed.

4.1.1 Introduction

A Fourier basis is a solution to Laplace’s eigenvalue problem

𝐿𝑥⃗ = 𝜆𝑥⃗ , (1)

with the discrete Laplace-Beltrami operator in matrix notation 𝐿 ∈ R𝑀×𝑁 , the eigenvectors 𝑥⃗ contain-
ing the harmonic functions and the eigenvalues 𝜆 the natural frequencies.

By solving a Laplace eigenvalue problem, it is also possible to determine a basis for a spatial Fourier
analysis. Often in practical applications, a measured quantity to be subjected to a Fourier analysis is only
known at spatially discrete sampling points (the sensor positions). An arbitrary arrangement of sample
points on a surface in three-dimensional space can be described by means of a triangular mesh. In the
case of an EEG system, the sample positions (the vertices of the triangular mesh) are the locations of the
sensors arranged on the head surface. A SPHARA basis is a solution of a Laplace eigenvalue problem for
the given triangle mesh, that can be obtained by discretizing a Laplace-Beltrami operator for the mesh and
solving the Laplace eigenvalue problem in equation (1). The SpharaPy package provides three methods
for the discretization of the Laplace-Beltrami operator; unit weighting of the edges and weighting with
the inverse of the Euclidean distance of the edges, and a FEM approach. For more detailed information
please refer to SPHARA – The theoretical background in a nutshell and Eigensystems of Discrete Laplace-
Beltrami Operators.

At the beginning we import three modules of the SpharaPy package as well as several other packages and
single functions of packages.

Code source: Uwe Graichen
License: BSD 3 clause

(continues on next page)

29

SpharaPy Documentation, Release 1.1.1

(continued from previous page)

import modules from spharapy package
import spharapy.trimesh as tm
import spharapy.spharabasis as sb
import spharapy.datasets as sd

import additional modules used in this tutorial
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np

4.1.2 Specification of the spatial configuration of the EEG sensors

Import information about EEG sensor setup of the sample data set

In this tutorial we will determine a SPHARA basis for a 256 channel EEG system with equidistant layout.
The data set is one of the example data sets contained in the SpharaPy toolbox, see spharapy.datasets
and spharapy.datasets.load_eeg_256_channel_study().

loading the 256 channel EEG dataset from spharapy sample datasets
mesh_in = sd.load_eeg_256_channel_study()

The dataset includes lists of vertices, triangles, and sensor labels, as well as EEG data from previously per-
formed experiment addressing the cortical activation related to somatosensory-evoked potentials (SEP).

print(mesh_in.keys())

Out:

dict_keys(['vertlist', 'trilist', 'labellist', 'eegdata'])

The triangulation of the EEG sensor setup consists of 256 vertices and 480 triangles.

vertlist = np.array(mesh_in['vertlist'])
trilist = np.array(mesh_in['trilist'])
print('vertices = ', vertlist.shape)
print('triangles = ', trilist.shape)

Out:

vertices = (256, 3)
triangles = (482, 3)

fig = plt.figure()
fig.subplots_adjust(left=0.02, right=0.98, top=0.98, bottom=0.02)
ax = fig.gca(projection='3d')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
ax.set_title('The triangulated EEG sensor setup')

(continues on next page)

30 Chapter 4. Tutorials and introductory examples

SpharaPy Documentation, Release 1.1.1

(continued from previous page)

ax.view_init(elev=20., azim=80.)
ax.set_aspect('auto')
ax.plot_trisurf(vertlist[:, 0], vertlist[:, 1], vertlist[:, 2],

triangles=trilist, color='lightblue', edgecolor='black',
linewidth=0.5, shade=True)

plt.show()

Out:

/home/docs/checkouts/readthedocs.org/user_builds/spharapy/checkouts/latest/
→˓examples/plot_02_sphara_basis_eeg.py:106: MatplotlibDeprecationWarning:␣
→˓Calling gca() with keyword arguments was deprecated in Matplotlib 3.4.␣
→˓Starting two minor releases later, gca() will take no keyword arguments.␣
→˓The gca() function should only be used to get the current axes, or if no␣
→˓axes exist, create new axes with default keyword arguments. To create a new␣
→˓axes with non-default arguments, use plt.axes() or plt.subplot().
ax = fig.gca(projection='3d')

4.1. Determination of the SPHARA basis functions for an EEG sensor setup 31

SpharaPy Documentation, Release 1.1.1

Create a SpharaPy TriMesh instance

In the next step we create an instance of the class spharapy.trimesh.TriMesh from the list of vertices
and triangles.

create an instance of the TriMesh class
mesh_eeg = tm.TriMesh(trilist, vertlist)

The class spharapy.trimesh.TriMesh provides a number of methods to determine certain properties
of the triangle mesh required to generate the SPHARA basis, listed below:

print all implemented methods of the TriMesh class
print([func for func in dir(tm.TriMesh) if not func.startswith('__')])

Out:

['adjacent_tri', 'is_edge', 'laplacianmatrix', 'massmatrix', 'one_ring_
→˓neighborhood', 'remove_vertices', 'stiffnessmatrix', 'trilist', 'vertlist',
→˓'weightmatrix']

4.1.3 Determining SPHARA bases using different discretisation approaches

Computing the basis functions

In the final step of the tutorial we will calculate SPHARA bases for the given EEG sensor setup. For
this we create three instances of the class spharapy.spharabasis.SpharaBasis. We use the three
discretization approaches implemented in this class for the Laplace-Beltrami operator: unit weighting
(‘unit’) and inverse Euclidean weigthing (‘inv_euclidean’) of the edges of the triangular mesh as well as
the FEM discretization (‘fem’)

'unit' discretization
sphara_basis_unit = sb.SpharaBasis(mesh_eeg, 'unit')
basis_functions_unit, natural_frequencies_unit = sphara_basis_unit.basis()

'inv_euclidean' discretization
sphara_basis_ie = sb.SpharaBasis(mesh_eeg, 'inv_euclidean')
basis_functions_ie, natural_frequencies_ie = sphara_basis_ie.basis()

'fem' discretization
sphara_basis_fem = sb.SpharaBasis(mesh_eeg, 'fem')
basis_functions_fem, natural_frequencies_fem = sphara_basis_fem.basis()

32 Chapter 4. Tutorials and introductory examples

SpharaPy Documentation, Release 1.1.1

Visualization the basis functions

The first 15 spatially low-frequency SPHARA basis functions are shown below, starting with DC at the
top left.

SPHARA basis using the discretization approache ‘unit’

sphinx_gallery_thumbnail_number = 2
figsb1, axes1 = plt.subplots(nrows=5, ncols=3, figsize=(8, 12),

subplot_kw={'projection': '3d'})
for i in range(np.size(axes1)):

colors = np.mean(basis_functions_unit[trilist, i + 0], axis=1)
ax = axes1.flat[i]
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
ax.view_init(elev=60., azim=80.)
ax.set_aspect('auto')
trisurfplot = ax.plot_trisurf(vertlist[:, 0], vertlist[:, 1],

vertlist[:, 2], triangles=trilist,
cmap=plt.cm.bwr,
edgecolor='white', linewidth=0.)

trisurfplot.set_array(colors)
trisurfplot.set_clim(-0.15, 0.15)

cbar = figsb1.colorbar(trisurfplot, ax=axes1.ravel().tolist(), shrink=0.85,
orientation='horizontal', fraction=0.05, pad=0.05,
anchor=(0.5, -4.5))

plt.subplots_adjust(left=0.0, right=1.0, bottom=0.08, top=1.0)
plt.show()

4.1. Determination of the SPHARA basis functions for an EEG sensor setup 33

SpharaPy Documentation, Release 1.1.1

34 Chapter 4. Tutorials and introductory examples

SpharaPy Documentation, Release 1.1.1

SPHARA basis using the discretization approache ‘inv_euclidean’

figsb1, axes1 = plt.subplots(nrows=5, ncols=3, figsize=(8, 12),
subplot_kw={'projection': '3d'})

for i in range(np.size(axes1)):
colors = np.mean(basis_functions_ie[trilist, i + 0], axis=1)
ax = axes1.flat[i]
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
ax.view_init(elev=60., azim=80.)
ax.set_aspect('auto')
trisurfplot = ax.plot_trisurf(vertlist[:, 0], vertlist[:, 1],

vertlist[:, 2], triangles=trilist,
cmap=plt.cm.bwr,
edgecolor='white', linewidth=0.)

trisurfplot.set_array(colors)
trisurfplot.set_clim(-0.18, 0.18)

cbar = figsb1.colorbar(trisurfplot, ax=axes1.ravel().tolist(), shrink=0.85,
orientation='horizontal', fraction=0.05, pad=0.05,
anchor=(0.5, -4.5))

plt.subplots_adjust(left=0.0, right=1.0, bottom=0.08, top=1.0)
plt.show()

4.1. Determination of the SPHARA basis functions for an EEG sensor setup 35

SpharaPy Documentation, Release 1.1.1

36 Chapter 4. Tutorials and introductory examples

SpharaPy Documentation, Release 1.1.1

SPHARA basis using the discretization approache ‘fem’

figsb1, axes1 = plt.subplots(nrows=5, ncols=3, figsize=(8, 12),
subplot_kw={'projection': '3d'})

for i in range(np.size(axes1)):
colors = np.mean(basis_functions_fem[trilist, i + 0], axis=1)
ax = axes1.flat[i]
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
ax.view_init(elev=60., azim=80.)
ax.set_aspect('auto')
trisurfplot = ax.plot_trisurf(vertlist[:, 0], vertlist[:, 1],

vertlist[:, 2], triangles=trilist,
cmap=plt.cm.bwr,
edgecolor='white', linewidth=0.)

trisurfplot.set_array(colors)
trisurfplot.set_clim(-0.01, 0.01)

cbar = figsb1.colorbar(trisurfplot, ax=axes1.ravel().tolist(), shrink=0.85,
orientation='horizontal', fraction=0.05, pad=0.05,
anchor=(0.5, -4.5))

plt.subplots_adjust(left=0.0, right=1.0, bottom=0.08, top=1.0)
plt.show()

4.1. Determination of the SPHARA basis functions for an EEG sensor setup 37

SpharaPy Documentation, Release 1.1.1

Total running time of the script: (0 minutes 4.290 seconds)

38 Chapter 4. Tutorials and introductory examples

SpharaPy Documentation, Release 1.1.1

4.2 Spatial SPHARA analysis of EEG data

Section contents

This tutorial shows exemplarily the spatial SPHARA analysis of 256-channel EEG data. The FEM
discretization of the Laplace-Beltrami operator is employed to calculate the SPHARA basic functions
that are used for the SPHARA decomposition.

4.2.1 Introduction

As explained in SPHARA – The theoretical background in a nutshell and in the tutorial Determination of
the SPHARA basis functions for an EEG sensor setup a spatial Fourier basis for a arbitrary sensor setup
can be determined as solution of the Laplace’s eigenvalue problem dicretized for the considered sensor
setup

𝐿𝑥⃗ = 𝜆𝑥⃗ ,

with the discrete Laplace-Beltrami operator in matrix notation 𝐿 ∈ R𝑀×𝑁 , the eigenvectors 𝑥⃗ contain-
ing the harmonic functions and the eigenvalues 𝜆 the natural frequencies.

The spatial Fourier basis determined in this way can be used for the spatial Fourier analysis of data
recorded with the considered sensor setup.

For the anaylsis of discrete data defined on the vertices of the triangular mesh - the SPHARA transform -
the inner product is used (transformation from spatial domain to spatial frequency domain). For an analy-
sis using eigenvectors computed by the FEM approach, the inner product that assures the𝐵-orthogonality
needs to be applied.

For the reverse transformation, the discrete data are synthesized using the linear combination of the
SPHARA coefficients and the corresponding SPHARA basis functions. More detailed information can
be found in the section Analysis and synthesis and in [GEF+15].

At the beginning we import three modules of the SpharaPy package as well as several other packages and
single functions of packages.

Code source: Uwe Graichen
License: BSD 3 clause

import modules from spharapy package
import spharapy.trimesh as tm
import spharapy.spharatransform as st
import spharapy.datasets as sd

import additional modules used in this tutorial
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np

4.2. Spatial SPHARA analysis of EEG data 39

SpharaPy Documentation, Release 1.1.1

4.2.2 Import the spatial configuration of the EEG sensors and the SEP data

In this tutorial we will apply the SPHARA analysis to SEP data of a single subject recorded with a 256
channel EEG system with equidistant layout. The data set is one of the example data sets contained in
the SpharaPy toolbox.

loading the 256 channel EEG dataset from spharapy sample datasets
mesh_in = sd.load_eeg_256_channel_study()

The dataset includes lists of vertices, triangles, and sensor labels, as well as EEG data from previously per-
formed experiment addressing the cortical activation related to somatosensory-evoked potentials (SEP).

print(mesh_in.keys())

Out:

dict_keys(['vertlist', 'trilist', 'labellist', 'eegdata'])

The triangulation of the EEG sensor setup consists of 256 vertices and 480 triangles. The EEG data
consists of 256 channels and 369 time samples, 50 ms before to 130 ms after stimulation. The sampling
frequency is 2048 Hz.

vertlist = np.array(mesh_in['vertlist'])
trilist = np.array(mesh_in['trilist'])
eegdata = np.array(mesh_in['eegdata'])
print('vertices = ', vertlist.shape)
print('triangles = ', trilist.shape)
print('eegdata = ', eegdata.shape)

Out:

vertices = (256, 3)
triangles = (482, 3)
eegdata = (256, 369)

fig = plt.figure()
fig.subplots_adjust(left=0.02, right=0.98, top=0.98, bottom=0.02)
ax = fig.gca(projection='3d')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
ax.set_title('The triangulated EEG sensor setup')
ax.view_init(elev=20., azim=80.)
ax.set_aspect('auto')
ax.plot_trisurf(vertlist[:, 0], vertlist[:, 1], vertlist[:, 2],

triangles=trilist, color='lightblue', edgecolor='black',
linewidth=0.5, shade=True)

plt.show()

40 Chapter 4. Tutorials and introductory examples

SpharaPy Documentation, Release 1.1.1

Out:

/home/docs/checkouts/readthedocs.org/user_builds/spharapy/checkouts/latest/
→˓examples/plot_03_sphara_analysis_eeg.py:105: MatplotlibDeprecationWarning:␣
→˓Calling gca() with keyword arguments was deprecated in Matplotlib 3.4.␣
→˓Starting two minor releases later, gca() will take no keyword arguments.␣
→˓The gca() function should only be used to get the current axes, or if no␣
→˓axes exist, create new axes with default keyword arguments. To create a new␣
→˓axes with non-default arguments, use plt.axes() or plt.subplot().
ax = fig.gca(projection='3d')

x = np.arange(-50, 130, 1/2.048)
figeeg = plt.figure()
axeeg = figeeg.gca()
axeeg.plot(x, eegdata[:, :].transpose())
axeeg.set_xlabel('t/ms')
axeeg.set_ylabel('V/µV')
axeeg.set_title('SEP data')
axeeg.set_ylim(-3.5, 3.5)
axeeg.set_xlim(-50, 130)
axeeg.grid(True)
plt.show()

4.2. Spatial SPHARA analysis of EEG data 41

SpharaPy Documentation, Release 1.1.1

4.2.3 Create a SpharaPy TriMesh instance

In the next step we create an instance of the class spharapy.trimesh.TriMesh from the list of vertices
and triangles.

create an instance of the TriMesh class
mesh_eeg = tm.TriMesh(trilist, vertlist)

4.2.4 SPHARA transform using FEM discretisation

Create a SpharaPy SpharaTransform instance

In the next step of the tutorial we determine an instance of the class SpharaTransform, which is used
to execute the transformation. For the determination of the SPHARA basis we use a Laplace-Beltrami
operator, which is discretized by the FEM approach.

sphara_transform_fem = st.SpharaTransform(mesh_eeg, 'fem')
basis_functions_fem, natural_frequencies_fem = sphara_transform_fem.basis()

42 Chapter 4. Tutorials and introductory examples

SpharaPy Documentation, Release 1.1.1

Visualization the basis functions

The first 15 spatially low-frequency SPHARA basis functions of the basis used for the transform are
shown below, starting with DC at the top left.

figsb1, axes1 = plt.subplots(nrows=5, ncols=3, figsize=(8, 12),
subplot_kw={'projection': '3d'})

for i in range(np.size(axes1)):
colors = np.mean(basis_functions_fem[trilist, i + 0], axis=1)
ax = axes1.flat[i]
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
ax.view_init(elev=60., azim=80.)
ax.set_aspect('auto')
trisurfplot = ax.plot_trisurf(vertlist[:, 0], vertlist[:, 1],

vertlist[:, 2], triangles=trilist,
cmap=plt.cm.bwr,
edgecolor='white', linewidth=0.)

trisurfplot.set_array(colors)
trisurfplot.autoscale()
trisurfplot.set_clim(-0.01, 0.01)

cbar = figsb1.colorbar(trisurfplot, ax=axes1.ravel().tolist(), shrink=0.85,
orientation='horizontal', fraction=0.05, pad=0.05,
anchor=(0.5, -4.5))

plt.subplots_adjust(left=0.0, right=1.0, bottom=0.08, top=1.0)
plt.show()

4.2. Spatial SPHARA analysis of EEG data 43

SpharaPy Documentation, Release 1.1.1

44 Chapter 4. Tutorials and introductory examples

SpharaPy Documentation, Release 1.1.1

SPHARA transform of the EEG data

In the final step we perform the SPHARA transformation of the EEG data. As a result, a butterfly plot
of all channels of the EEG is compared to the visualization of the power contributions of the first 40
SPHARA basis functions. Only the first 40 out of 256 basis functions are used for the visualization,
since the power contribution of the higher basis functions is very low.

perform the SPHARA transform
sphara_trans_eegdata = sphara_transform_fem.analysis(eegdata.transpose())

40 low-frequency basis functions are displayed
ysel = 40
figsteeg, (axsteeg1, axsteeg2) = plt.subplots(nrows=2)

y = np.arange(0, ysel)
x = np.arange(-50, 130, 1/2.048)

axsteeg1.plot(x, eegdata[:, :].transpose())
axsteeg1.set_ylabel('V/µV')
axsteeg1.set_title('EEG data, 256 channels')
axsteeg1.set_ylim(-2.5, 2.5)
axsteeg1.set_xlim(-50, 130)
axsteeg1.grid(True)

pcm = axsteeg2.pcolormesh(x, y,
np.square(np.abs(sphara_trans_eegdata.transpose()

[0:ysel, :])))
axsteeg2.set_xlabel('t/ms')
axsteeg2.set_ylabel('# BF')
axsteeg2.set_title('Power contribution of SPHARA basis functions')
axsteeg2.grid(True)
figsteeg.colorbar(pcm, ax=[axsteeg1, axsteeg2], shrink=0.45,

anchor=(0.85, 0.0), label='power / a.u.')

plt.subplots_adjust(left=0.1, right=0.85, bottom=0.1, top=0.95, hspace=0.35)
plt.show()
sphinx_gallery_thumbnail_number = 4

4.2. Spatial SPHARA analysis of EEG data 45

SpharaPy Documentation, Release 1.1.1

Total running time of the script: (0 minutes 2.408 seconds)

4.3 Spatial SPHARA filtering of EEG data

Section contents

In this tutorial we show how to use the SPHARA basis functions to design a spatial low pass filter for
application to EEG data. The FEM discretization of the Laplace-Beltrami operator is used to calculate
the SPHARA basic functions that are used for the SPHARA low pass filter. The applicability of the
filter is shown using an EEG data set that is disturbed by white noise in different noise levels.

4.3.1 Introduction

The human head as a volume conductor exhibits spatial low-pass filter properties. For this reason, the po-
tential distribution of the EEG on the scalp surface can be represented by a few low-frequency SPHARA
basis functions, compare Spatial SPHARA analysis of EEG data. In contrast, single channel dropouts
and spatially uncorrelated sensor noise exhibit an almost equally distributed spatial SPHARA spectrum.
This fact can be exploited for the design of a spatial filter for the suppression of uncorrelated sensor noise.

At the beginning we import three modules of the SpharaPy package as well as several other packages and
single functions from packages.

46 Chapter 4. Tutorials and introductory examples

SpharaPy Documentation, Release 1.1.1

Code source: Uwe Graichen
License: BSD 3 clause

import modules from spharapy package
import spharapy.trimesh as tm
import spharapy.spharafilter as sf
import spharapy.datasets as sd

import additional modules used in this tutorial
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np

4.3.2 Import the spatial configuration of the EEG sensors and the SEP data

In this tutorial we will apply a spatial SPHARA filter to SEP data of a single subject recorded with a 256
channel EEG system with equidistant layout. The data set is one of the example data sets contained in
the SpharaPy toolbox.

loading the 256 channel EEG dataset from spharapy sample datasets
mesh_in = sd.load_eeg_256_channel_study()

The dataset includes lists of vertices, triangles, and sensor labels, as well as EEG data from previously per-
formed experiment addressing the cortical activation related to somatosensory-evoked potentials (SEP).

print(mesh_in.keys())

Out:

dict_keys(['vertlist', 'trilist', 'labellist', 'eegdata'])

The triangulation of the EEG sensor setup consists of 256 vertices and 480 triangles. The EEG data
consists of 256 channels and 369 time samples, 50 ms before to 130 ms after stimulation. The sampling
frequency is 2048 Hz.

vertlist = np.array(mesh_in['vertlist'])
trilist = np.array(mesh_in['trilist'])
eegdata = np.array(mesh_in['eegdata'])
print('vertices = ', vertlist.shape)
print('triangles = ', trilist.shape)
print('eegdata = ', eegdata.shape)

Out:

vertices = (256, 3)
triangles = (482, 3)
eegdata = (256, 369)

fig = plt.figure()
fig.subplots_adjust(left=0.02, right=0.98, top=0.98, bottom=0.02)

(continues on next page)

4.3. Spatial SPHARA filtering of EEG data 47

SpharaPy Documentation, Release 1.1.1

(continued from previous page)

ax = fig.gca(projection='3d')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
ax.set_title('The triangulated EEG sensor setup')
ax.view_init(elev=20., azim=80.)
ax.set_aspect('auto')
ax.plot_trisurf(vertlist[:, 0], vertlist[:, 1], vertlist[:, 2],

triangles=trilist, color='lightblue', edgecolor='black',
linewidth=0.5, shade=True)

plt.show()

Out:

/home/docs/checkouts/readthedocs.org/user_builds/spharapy/checkouts/latest/
→˓examples/plot_04_sphara_filter_eeg.py:88: MatplotlibDeprecationWarning:␣
→˓Calling gca() with keyword arguments was deprecated in Matplotlib 3.4.␣
→˓Starting two minor releases later, gca() will take no keyword arguments.␣
→˓The gca() function should only be used to get the current axes, or if no␣
→˓axes exist, create new axes with default keyword arguments. To create a new␣
→˓axes with non-default arguments, use plt.axes() or plt.subplot().
ax = fig.gca(projection='3d')

48 Chapter 4. Tutorials and introductory examples

SpharaPy Documentation, Release 1.1.1

x = np.arange(-50, 130, 1/2.048)
figeeg = plt.figure()
axeeg = figeeg.gca()
axeeg.plot(x, eegdata[:, :].transpose())
axeeg.set_xlabel('t/ms')
axeeg.set_ylabel('V/µV')
axeeg.set_title('SEP data')
axeeg.set_ylim(-3.5, 3.5)
axeeg.set_xlim(-50, 130)
axeeg.grid(True)
plt.show()

Create a SpharaPy TriMesh instance

In the next step we create an instance of the class spharapy.trimesh.TriMesh from the list of vertices
and triangles.

create an instance of the TriMesh class
mesh_eeg = tm.TriMesh(trilist, vertlist)

4.3. Spatial SPHARA filtering of EEG data 49

SpharaPy Documentation, Release 1.1.1

4.3.3 SPHARA filter using FEM discretisation

Create a SpharaPy SpharaFilter instance

In the following step of the tutorial we determine an instance of the class SpharaFilter, which is used
to execute the spatial filtering. For the determination of the SPHARA basis we use a Laplace-Beltrami
operator, which is discretized by the FEM approach.

sphara_filter_fem = sf.SpharaFilter(mesh_eeg, mode='fem',
specification=20)

basis_functions_fem, natural_frequencies_fem = sphara_filter_fem.basis()

Visualization the basis functions

The first 15 spatially low-frequency SPHARA basis functions are shown below, starting with DC at the
top left.

figsb1, axes1 = plt.subplots(nrows=5, ncols=3, figsize=(8, 12),
subplot_kw={'projection': '3d'})

for i in range(np.size(axes1)):
colors = np.mean(basis_functions_fem[trilist, i + 0], axis=1)
ax = axes1.flat[i]
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
ax.view_init(elev=60., azim=80.)
ax.set_aspect('auto')
trisurfplot = ax.plot_trisurf(vertlist[:, 0], vertlist[:, 1],

vertlist[:, 2], triangles=trilist,
cmap=plt.cm.bwr,
edgecolor='white', linewidth=0.)

trisurfplot.set_array(colors)
trisurfplot.set_clim(-0.01, 0.01)

cbar = figsb1.colorbar(trisurfplot, ax=axes1.ravel().tolist(), shrink=0.85,
orientation='horizontal', fraction=0.05, pad=0.05,
anchor=(0.5, -4.5))

plt.subplots_adjust(left=0.0, right=1.0, bottom=0.08, top=1.0)
plt.show()

50 Chapter 4. Tutorials and introductory examples

SpharaPy Documentation, Release 1.1.1

4.3. Spatial SPHARA filtering of EEG data 51

SpharaPy Documentation, Release 1.1.1

SPHARA filtering of the EEG data

In the next step we perform the SPHARA filtering of the EEG data. As a result, the butterfly plots of
all channels of the EEG with and without filtering is compared. For the marked time samples also topo
plots are provided.

perform the SPHARA filtering
sphara_filt_eegdata = sphara_filter_fem.filter(eegdata.transpose()).
→˓transpose()

figsteeg, (axsteeg1, axsteeg2) = plt.subplots(nrows=2, figsize=(8, 6.5))

axsteeg1.axvline(13, color='red')
axsteeg1.axvline(19, color='blue')
axsteeg1.axvline(30, color='green')
axsteeg1.plot(x, eegdata[:, :].transpose())
axsteeg1.set_title('Unfiltered EEG data')
axsteeg1.set_ylabel('V/µV')
axsteeg1.set_xlabel('t/ms')
axsteeg1.set_ylim(-2.5, 2.5)
axsteeg1.set_xlim(-50, 130)
axsteeg1.grid(True)

axsteeg2.axvline(13, color='red')
axsteeg2.axvline(19, color='blue')
axsteeg2.axvline(30, color='green')
axsteeg2.plot(x, sphara_filt_eegdata[:, :].transpose())
axsteeg2.set_title('SPHARA low-pass filtered EEG data, 20 BF, fem')
axsteeg2.set_ylabel('V/µV')
axsteeg2.set_xlabel('t/ms')
axsteeg2.set_ylim(-2.5, 2.5)
axsteeg2.set_xlim(-50, 130)
axsteeg2.grid(True)

plt.subplots_adjust(left=0.1, right=0.95, bottom=0.1, top=0.95, hspace=0.3)
plt.show()

52 Chapter 4. Tutorials and introductory examples

SpharaPy Documentation, Release 1.1.1

Out:

[[3.55257745e-03 -4.26785159e-03 3.71790460e-03 ... 0.00000000e+00
0.00000000e+00 0.00000000e+00]

[3.55257745e-03 -2.44107146e-03 -1.30848353e-05 ... 0.00000000e+00
0.00000000e+00 0.00000000e+00]

[3.55257745e-03 -1.68384132e-03 -3.73106354e-04 ... 0.00000000e+00
0.00000000e+00 0.00000000e+00]

...
[3.55257745e-03 -7.00089372e-04 -1.07176673e-03 ... 0.00000000e+00

0.00000000e+00 0.00000000e+00]
[3.55257745e-03 8.98504311e-04 -8.07965233e-04 ... 0.00000000e+00

0.00000000e+00 0.00000000e+00]
[3.55257745e-03 3.00232831e-04 -1.57396181e-03 ... 0.00000000e+00

0.00000000e+00 0.00000000e+00]]

time_pts = [129, 141, 164]
figsf1, axessf1 = plt.subplots(nrows=2, ncols=3, figsize=(8, 5),

subplot_kw={'projection': '3d'})

for i in range(2):
for j in range(3):

if i == 0:
(continues on next page)

4.3. Spatial SPHARA filtering of EEG data 53

SpharaPy Documentation, Release 1.1.1

(continued from previous page)

colorssf1 = np.mean(eegdata[trilist, time_pts[j]], axis=1)
else:

colorssf1 = np.mean(sphara_filt_eegdata[trilist, time_pts[j]],
axis=1)

ax = axes1.flat[i]
axessf1[i, j].set_xlabel('x')
axessf1[i, j].set_ylabel('y')
axessf1[i, j].set_zlabel('z')
axessf1[i, j].view_init(elev=60., azim=80.)
axessf1[i, j].set_aspect('auto')

trisurfplot = axessf1[i, j].plot_trisurf(vertlist[:, 0],
vertlist[:, 1],
vertlist[:, 2],
triangles=trilist,
cmap=plt.cm.bwr,
edgecolor='white',
linewidth=0.)

trisurfplot.set_array(colorssf1)
trisurfplot.set_clim(-2., 2)

cbar = figsb1.colorbar(trisurfplot, ax=axessf1.ravel().tolist(), shrink=0.85,
orientation='horizontal', fraction=0.05, pad=0.05,
anchor=(0.5, 0))

plt.subplots_adjust(left=0.0, right=1.0, bottom=0.2, top=1.0)
plt.show()

54 Chapter 4. Tutorials and introductory examples

SpharaPy Documentation, Release 1.1.1

Application of the the spatial SPHARA filter to data with artificial noise

In a final step the EEG data are disturbed by white noise with different noise levels (3dB, 0dB and -3dB).
A spatial low-pass SPHARA filter with 20 basis functions is applied to these data. The results of the
filtering are shown below.

vector with noise levels in dB
db_val_vec = [3, 0, -3]

compute the power of the SEP data
power_sep = np.sum(np.square(np.absolute(eegdata))) / eegdata.size

compute a vector with standard deviations of the noise in relation
to signal power for the given noise levels
noise_sd_vec = list(map(lambda db_val:

np.sqrt(power_sep / (10 ** (db_val / 10))),
db_val_vec))

add the noise to the EEG data
eegdata_noise = list(map(lambda noise_sd:

eegdata + np.random.normal(0, noise_sd, [256, 369]),
noise_sd_vec))

filter the EEG data containing the artificial noise
eegdata_noise_filt = list(map(lambda eeg_noise:

(sphara_filter_fem.filter(eeg_noise.
→˓transpose()).

transpose()),
eegdata_noise))

figfilt, axesfilt = plt.subplots(nrows=4, ncols=2, figsize=(8, 10.5))

axesfilt[0, 0].plot(x, eegdata[:, :].transpose())
axesfilt[0, 0].set_title('EEG data')
axesfilt[0, 0].set_ylabel('V/µV')
axesfilt[0, 0].set_xlabel('t/ms')
axesfilt[0, 0].set_ylim(-2.5, 2.5)
axesfilt[0, 0].set_xlim(-50, 130)
axesfilt[0, 0].grid(True)

axesfilt[0, 1].plot(x, sphara_filt_eegdata[:, :].transpose())
axesfilt[0, 1].set_title('SPHARA low-pass filtered EEG data')
axesfilt[0, 1].set_ylabel('V/µV')
axesfilt[0, 1].set_xlabel('t/ms')
axesfilt[0, 1].set_ylim(-2.5, 2.5)
axesfilt[0, 1].set_xlim(-50, 130)
axesfilt[0, 1].grid(True)

for i in range(3):
axesfilt[i + 1, 0].plot(x, eegdata_noise[i].transpose())

(continues on next page)

4.3. Spatial SPHARA filtering of EEG data 55

SpharaPy Documentation, Release 1.1.1

(continued from previous page)

axesfilt[i + 1, 0].set_title('EEG data + noise, SNR ' +
str(db_val_vec[i]) + 'dB')

axesfilt[i + 1, 0].set_ylabel('V/µV')
axesfilt[i + 1, 0].set_xlabel('t/ms')
axesfilt[i + 1, 0].set_ylim(-2.5, 2.5)
axesfilt[i + 1, 0].set_xlim(-50, 130)
axesfilt[i + 1, 0].grid(True)

axesfilt[i + 1, 1].plot(x, eegdata_noise_filt[i].transpose())
axesfilt[i + 1, 1].set_title('EEG data + noise, SNR ' +

str(db_val_vec[i]) + 'dB, SPHARA filtered')
axesfilt[i + 1, 1].set_ylabel('V/µV')
axesfilt[i + 1, 1].set_xlabel('t/ms')
axesfilt[i + 1, 1].set_ylim(-2.5, 2.5)
axesfilt[i + 1, 1].set_xlim(-50, 130)
axesfilt[i + 1, 1].grid(True)

plt.subplots_adjust(left=0.07, right=0.97, bottom=0.05, top=0.95, hspace=0.45)
plt.show()
sphinx_gallery_thumbnail_number = 6

56 Chapter 4. Tutorials and introductory examples

SpharaPy Documentation, Release 1.1.1

Total running time of the script: (0 minutes 6.177 seconds)

4.3. Spatial SPHARA filtering of EEG data 57

SpharaPy Documentation, Release 1.1.1

58 Chapter 4. Tutorials and introductory examples

CHAPTER

FIVE

GLOSSARY OF COMMON TERMS

Boundary condition In partial differential equations, boundary conditions (BC) are constraints of the
solution function 𝑢 for a given domain 𝐷. Thus, the values of the function are specified on the
boundary (in the topological sense) of the considered domain 𝐷. Neumann and Dirichlet bound-
ary conditions are frequently used. The Python implementation of SPHARA uses the Neumann
boundary condition in the solution of the Laplacian eigenvalue problem.

EEG EEG is an electrophysiological method for measuring the electrical activity of the brain by record-
ing potentials on the surface of the head.

Finite Element Method The Finite Element Method (FEM) is a approach to solve (partial differential)
equations, where continuous values are approximated as a set of values at discrete points. For the
approximation nodal basis functions are used.

Laplace-Beltrami operator The generalized Laplace operator, that can applied on functions defined
on surfaces in Euclidean space and, more generally, on Riemannian and pseudo-Riemannian man-
ifolds. For triangulated manifolds, there are several methods to discretize the Laplace-Beltrami
operator.

Triangular mesh A triangular mesh is a piecewise planar approximation of a smooth surface inR3 using
triangles. The triangles of the mesh are connected by their common edges or corners. The sample
points used for the approximation are the verices 𝑐⃗ ∈ 𝑉 with 𝑣⃗𝑖 ∈ R3. A triangle 𝑡 is defined by
three indices to the list of vertices. Thus, a triangular grid is represented by a list of vertices and a
list of triangles.

59

SpharaPy Documentation, Release 1.1.1

60 Chapter 5. Glossary of Common Terms

BIBLIOGRAPHY

[Chu97] F. R. K. Chung. Spectral Graph Theory. Volume 92. American Mathematical Society, 1997.
CBMS Regional Conference Series in Mathematics. doi:10.1090/cbms/092.

[CAC+08] G. Cruccu, M.J. Aminoff, G. Curio, J.M. Guerit, R. Kakigi, F. Mauguiere, P.M.
Rossini, R.-D. Treede, and L. Garcia-Larrea. Recommendations for the clinical use of
somatosensory-evoked potentials. Clinical Neurophysiology, 119(8):1705 – 1719, 2008.
doi:10.1016/j.clinph.2008.03.016.

[DZMC07] R. Dyer, R. H. Zhang, T. Möller, and A. Clements. An investigation of the spectral robust-
ness of mesh laplacians. Technical Report, Simon Fraser University, GrUVi Lab, Burnaby,
Canada, 2007. URL: https://eprints.cs.univie.ac.at/4961.

[Fuj95] K. Fujiwara. Eigenvalues of Laplacians on a closed riemannian manifold and its
nets. Proceedings of the American Mathematical Society, 123(8):2585–2594, 1995.
doi:10.1090/S0002-9939-1995-1257106-5.

[GEF+15] U. Graichen, R. Eichardt, P. Fiedler, D. Strohmeier, F. Zanow, and J. Haueisen. SPHARA -
a generalized spatial fourier analysis for multi-sensor systems with non-uniformly arranged
sensors: application to EEG. PLoS ONE, 04 2015. doi:10.1371/journal.pone.0121741.

[MAB+99] F. Mauguiere, T. Allison, C. Babiloni, H. Buchner, A. A. Eisen, D.S. Goodin, S.J. Jones,
R. Kakigi, S. Matsuoka, M.R. Nuwer, P.M. Rossini, and H. Shibasaki. Somatosensory evoked
potentials. In G. Deuschl and A. Eisen, editors, Recommendations for the Practice of Clin-
ical Neurophysiology: Guidelines of the International Federation of Clinical Neurophysiol-
ogy, chapter 2.4, pages 79–90. Elsevier Science B. V., 1999. URL: http://www.scopus.com/
inward/record.url?scp=0032621105&partnerID=8YFLogxK.

[MDSB03] M. Meyer, M. Desbrun, P. Schröder, and A. Barr. Discrete differential geometry operators
for triangulated 2-manifolds. In H. C. Hege and K. Polthier, editors, Visualization and Math-
ematics III, pages 35–57. Springer, 2003. doi:10.1007/978-3-662-05105-4_2.

[PP93] U. Pinkall and K. Polthier. Computing discrete minimal surfaces and their conjugates. Ex-
perimental Mathematics, 2:15–36, 1993. doi:10.1080/10586458.1993.10504266.

[Pol02] K. Polthier. Computational aspects of discrete minimal surfaces. In J. Hass, D. Hoffman,
A. Jaffe, H. Rosenberg, R. Schoen, and M. Wolf, editors, Proceedings of the Clay Sum-
mer School on Global Theory of Minimal Surfaces. 2002. URL: http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.8.6834&rank=1.

[RKH10] K.R. Rao, D.N. Kim, and J.J. Hwang. Fast Fourier Transform: Algorithms and Applications.
Signals and communication technology. Springer, 2010. doi:10.1007/978-1-4020-6629-0.

61

https://doi.org/10.1090/cbms/092
https://doi.org/10.1016/j.clinph.2008.03.016
https://eprints.cs.univie.ac.at/4961
https://doi.org/10.1090/S0002-9939-1995-1257106-5
https://doi.org/10.1371/journal.pone.0121741
http://www.scopus.com/inward/record.url?scp=0032621105&partnerID=8YFLogxK
http://www.scopus.com/inward/record.url?scp=0032621105&partnerID=8YFLogxK
https://doi.org/10.1007/978-3-662-05105-4_2
https://doi.org/10.1080/10586458.1993.10504266
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.8.6834&rank=1
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.8.6834&rank=1
https://doi.org/10.1007/978-1-4020-6629-0

SpharaPy Documentation, Release 1.1.1

[Tau95] G. Taubin. Signal processing approach to fair surface design. In Proceedings of the ACM SIG-
GRAPH Conference on Computer Graphics, 351–358. 1995. doi:10.1145/218380.218473.

[VL07] B. Vallet and B. Levy. Spectral geometry processing with manifold harmonics. Technical
Report inria-00186931, Université Nancy, Institut National Polytechnique de Lorraine, 2007.
doi:10.1111/j.1467-8659.2008.01122.x.

[WMKG07] M. Wardetzky, S. Mathur, F. Kälberer, and E. Grinspun. Discrete laplace operators: no free
lunch. In A. Belyaev and M Garland, editors, SGP07: Eurographics Symposium on Geometry
Processing, 33–37. Eurographics Association, 2007. doi:10.2312/SGP/SGP07/033-037.

[ZvKD07] H. Zhang, O. van Kaick, and R. Dyer. Spectral methods for mesh processing and anal-
ysis. In D. Schmalstieg and J. Bittner, editors, STAR Proceedings of Eurographics, vol-
ume 92, 1–22. 2007. URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.132.
8135&rep=rep1&type=pdf.

[ZvKD10] H. Zhang, O. van Kaick, and R. Dyer. Spectral mesh processing. Computer Graphics Forum,
29(6):1865–1894, 2010. doi:10.1111/j.1467-8659.2010.01655.x.

62 Bibliography

https://doi.org/10.1145/218380.218473
https://doi.org/10.1111/j.1467-8659.2008.01122.x
https://doi.org/10.2312/SGP/SGP07/033-037
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.132.8135&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.132.8135&rep=rep1&type=pdf
https://doi.org/10.1111/j.1467-8659.2010.01655.x

PYTHON MODULE INDEX

s
spharapy.datasets, 26
spharapy.spharabasis, 20
spharapy.spharafilter, 24
spharapy.spharatransform, 22
spharapy.trimesh, 15

63

SpharaPy Documentation, Release 1.1.1

64 Python Module Index

INDEX

A
adjacent_tri() (spharapy.trimesh.TriMesh

method), 15
analysis() (spharapy.spharatransform.SpharaTransform

method), 22
angles_triangle() (in module

spharapy.trimesh), 19
area_triangle() (in module spharapy.trimesh),

19

B
basis() (spharapy.spharabasis.SpharaBasis

method), 21
Boundary condition, 59

E
EEG, 59

F
filter() (spharapy.spharafilter.SpharaFilter

method), 25
Finite Element Method, 59

I
is_edge() (spharapy.trimesh.TriMesh method),

16

L
Laplace-Beltrami operator, 59
laplacianmatrix() (spharapy.trimesh.TriMesh

method), 16
load_eeg_256_channel_study() (in module

spharapy.datasets), 26
load_minimal_triangular_mesh() (in module

spharapy.datasets), 27
load_simple_triangular_mesh() (in module

spharapy.datasets), 27

M
massmatrix() (spharapy.spharabasis.SpharaBasis

method), 21

massmatrix() (spharapy.trimesh.TriMesh
method), 16

mode (spharapy.spharabasis.SpharaBasis prop-
erty), 21

module
spharapy.datasets, 26
spharapy.spharabasis, 20
spharapy.spharafilter, 24
spharapy.spharatransform, 22
spharapy.trimesh, 15

O
one_ring_neighborhood()

(spharapy.trimesh.TriMesh method),
17

R
remove_vertices() (spharapy.trimesh.TriMesh

method), 17

S
side_lens_triangle() (in module

spharapy.trimesh), 20
specification (spharapy.spharafilter.SpharaFilter

property), 26
SpharaBasis (class in spharapy.spharabasis), 20
SpharaFilter (class in spharapy.spharafilter),

24
spharapy.datasets

module, 26
spharapy.spharabasis

module, 20
spharapy.spharafilter

module, 24
spharapy.spharatransform

module, 22
spharapy.trimesh

module, 15
SpharaTransform (class in

spharapy.spharatransform), 22
stiffnessmatrix() (spharapy.trimesh.TriMesh

method), 18

65

SpharaPy Documentation, Release 1.1.1

synthesis() (spharapy.spharatransform.SpharaTransform
method), 23

T
triangsamples (spharapy.spharabasis.SpharaBasis

property), 22
Triangular mesh, 59
trilist (spharapy.trimesh.TriMesh property), 18
TriMesh (class in spharapy.trimesh), 15

V
vertlist (spharapy.trimesh.TriMesh property),

18

W
weightmatrix() (spharapy.trimesh.TriMesh

method), 18

66 Index

	Quick start with SpharaPy
	SPHARA – The problem setting
	The SpharaPy package
	Specification of the spatial configuration of the sample points
	Determining the Laplace-Beltrami Operator

	SPHARA – The theoretical background in a nutshell
	Motivation
	Discrete representation of surfaces
	Discrete Laplace-Beltrami Operators
	Eigensystems of Discrete Laplace-Beltrami Operators
	SPHARA as signal processing framework
	Requirements
	Basis functions
	Analysis and synthesis

	Spatial filtering using SPHARA

	API Reference
	spharapy.trimesh: Triangular Mesh Data
	spharapy.spharabasis: SPHARA Basis
	spharapy.spharatransform: SPHARA Transform
	spharapy.spharafilter: SPHARA Filter
	spharapy.datasets: Sample data sets

	Tutorials and introductory examples
	Determination of the SPHARA basis functions for an EEG sensor setup
	Introduction
	Specification of the spatial configuration of the EEG sensors
	Import information about EEG sensor setup of the sample data set
	Create a SpharaPy TriMesh instance

	Determining SPHARA bases using different discretisation approaches
	Computing the basis functions
	Visualization the basis functions
	SPHARA basis using the discretization approache ‘unit’
	SPHARA basis using the discretization approache ‘inv_euclidean’
	SPHARA basis using the discretization approache ‘fem’

	Spatial SPHARA analysis of EEG data
	Introduction
	Import the spatial configuration of the EEG sensors and the SEP data
	Create a SpharaPy TriMesh instance
	SPHARA transform using FEM discretisation
	Create a SpharaPy SpharaTransform instance
	Visualization the basis functions
	SPHARA transform of the EEG data

	Spatial SPHARA filtering of EEG data
	Introduction
	Import the spatial configuration of the EEG sensors and the SEP data
	Create a SpharaPy TriMesh instance

	SPHARA filter using FEM discretisation
	Create a SpharaPy SpharaFilter instance
	Visualization the basis functions
	SPHARA filtering of the EEG data
	Application of the the spatial SPHARA filter to data with artificial noise

	Glossary of Common Terms
	Bibliography
	Python Module Index
	Index

